|
import gradio as gr |
|
import spaces |
|
import torch |
|
from loadimg import load_img |
|
from torchvision import transforms |
|
from transformers import AutoModelForImageSegmentation |
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
birefnet.to("cuda") |
|
|
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
|
|
@spaces.GPU |
|
def rmbg(image,url): |
|
if image is None : |
|
image = url |
|
image = load_img(image).convert("RGB") |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to("cuda") |
|
|
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
image.putalpha(mask) |
|
return image |
|
|
|
|
|
rmbg_tab = gr.Interface(fn=rmbg, inputs=["image","text"], outputs=["image"], api_name="rmbg") |
|
|
|
demo = gr.TabbedInterface( |
|
[rmbg_tab], |
|
["remove background"], |
|
title="Utilities that require GPU", |
|
) |
|
|
|
|
|
demo.launch() |
|
|