File size: 6,745 Bytes
1eba40c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from typing import Dict, List, Tuple, Any, Callable
from dataclasses import dataclass
import pandas as pd
import numpy as np
from sklearn.metrics import (
    f1_score, accuracy_score, recall_score, confusion_matrix,
    classification_report,
    r2_score, mean_squared_error
)


@dataclass
class ClassificationScores:
    precision: float
    recall: float
    f1: float
    support: float = None

    @classmethod
    def from_dict(cls, d:Dict[str, float]) -> "ClassificationScores":
        d = {k.split('-')[0]: v for k, v in d.items() if k.split('-')[0] in cls.__annotations__}
        return cls(**d)
    
@dataclass
class RegressionScores:
    r2: float
    mse: float
    rmse: float

    @classmethod
    def make(cls, true:np.ndarray, pred:np.ndarray) -> "RegressionScores":
        return cls(
            r2=r2_score(true, pred),
            mse=mean_squared_error(true, pred),
            rmse=mean_squared_error(true, pred, squared=False)
        )

    def __add__(self, other):
        return RegressionScores(
            r2=self.r2 + other.r2,
            mse=self.mse + other.mse,
            rmse=self.rmse + other.rmse
        )
    
    def __truediv__(self, other):
        return RegressionScores(
            r2=self.r2 / other,
            mse=self.mse / other,
            rmse=self.rmse / other
        )
        

@dataclass
class ClassificationReport:
    accuracy: float
    confusion: np.ndarray
    macro: ClassificationScores
    weighted: ClassificationScores
    labels: list
    label_scores: Dict[str, ClassificationScores] # label -> ClassificationScores

    f1: float = None # only for binary classification
    recall: float = None # only for binary classification

    @classmethod
    def make_report(cls, true:np.ndarray, pred:np.ndarray) -> "ClassificationReport":
        class_labels = np.unique(np.concatenate([true, pred]))
        report = classification_report(true, pred, labels=class_labels, output_dict=True, zero_division=0)
        rep = cls(
            accuracy=report.pop('accuracy'),
            confusion=confusion_matrix(true, pred, labels=class_labels),
            macro=ClassificationScores.from_dict(report.pop('macro avg')),
            weighted=ClassificationScores.from_dict(report.pop('weighted avg')),
            label_scores={label: ClassificationScores.from_dict(scores) for label, scores in report.items()},
            labels=list(class_labels)
        )
        if len(class_labels) == 2:
            rep.f1 = f1_score(true, pred)
            rep.recall = recall_score(true, pred)
        return rep

    @property
    def df(self):
        df_dict = {
            'Accuracy': self.accuracy,
            **{f'{score.title()} (macro)': getattr(self.macro, score) for score in self.macro.__annotations__ if score != 'support'},
        }
        df = pd.DataFrame([df_dict])
        return df

        

    
@dataclass
class RegressionReport:
    r2: float
    rmse: float
    labels: list = None # only for multivariate regression
    label_scores: Dict[str, float] = None # only for multivariate regression

    @classmethod
    def make_report(cls, true:np.ndarray, pred:np.ndarray, labels=None) -> "RegressionReport":
        report = cls(
            r2=r2_score(true, pred),
            rmse=mean_squared_error(true, pred, squared=False)
        )
        if len(true.shape) > 1 and true.shape[1] > 1:
            report.labels = labels or list(range(true.shape[1]))
            report.label_scores = {label: RegressionScores.make(true[:,i], pred[:,i]) for i,label in enumerate(report.labels)}
        return report
    
    @property
    def is_multivariate(self):
        return self.labels is not None
    
    @property
    def df(self):
        df_dict = {
            'R2 avg': self.r2,
            'RMSE avg': self.rmse,
        }
        if self.is_multivariate:
            df_dict.update({f'R2 {label}': scores.r2 for label, scores in self.label_scores.items()})
            df_dict.update({f'RMSE {label}': scores.rmse for label, scores in self.label_scores.items()})
        df = pd.DataFrame([df_dict])
        rmse_cols = ['RMSE avg'] 
        df = df.filter(items=['RMSE avg', 'Pearson avg'] + sorted(df.columns.difference(['Pearson avg', 'RMSE avg'])))
        df.columns = df.columns.str.replace('\s(a|b|c|d)_', ' ', regex=True)
        return df
    

@dataclass
class Results:
    taska: ClassificationReport
    taskb: RegressionReport
    taskc: ClassificationReport
    taskd: RegressionReport


def absolute_results(true_df:pd.DataFrame, pred_df:pd.DataFrame, tasks='abcd'):
    task_reports = {}
    for task in tasks:
        true=true_df.filter(regex=f'^{task}_').sort_index(axis=1)
        pred=pred_df.filter(regex=f'^{task}_').sort_index(axis=1)
        if len(true.columns) == 0 or len(pred.columns) == 0:
            task_reports['task'+task] = None
            continue
        if task in ['a', 'c']:
            task_reports['task'+task] = ClassificationReport.make_report(
                true=true.iloc[:,0].values,
                pred=pred.iloc[:,0].values
            )
        else:
            task_reports['task'+task] = RegressionReport.make_report(
                true=true.values,
                pred=pred.values,
                labels=true.columns.tolist() if task == 'd' else None
            )
    return Results(**task_reports)
    


def estimators_eval(estimators:List[Tuple[str,Any]], score_func:Callable[[np.ndarray, np.ndarray], float]):
    def fit_eval_estimators(X_train:np.ndarray, y_train:np.ndarray, X_test:np.ndarray, y_test:np.ndarray) -> dict:
        estimator_scores = {}
        for name, estimator in estimators:
            estimator.fit(X_train, y_train)
            y_pred = estimator.predict(X_test)
            score = score_func(y_test, y_pred)#*(1.4*((y_train>th).sum()/(len(y_train)-1))) # weighted for class imbalance
            print(f"\"{name}\" estimator score: {score:.4f}")
            estimator_scores[name] = score
        return estimator_scores
    return fit_eval_estimators


def label_metrics(score_fun, y_true, y_pred):
    if len(y_true.shape) > 1 and y_true.shape[1] > 1:
        scores = []
        for i in range(y_true.shape[1]):
            scores.append(score_fun(y_true[:,i],y_pred[:,i]))
        return scores
    score = score_fun(y_true.ravel(), y_pred.ravel())
    if isinstance(score, list):
        return score
    elif isinstance(score, np.ndarray):
        return score.tolist()
    else:
        return [score]

def metrics_for_estimators(estimators, score_fun, X, y_true):
    metrics = {}
    for name, estimator in estimators:
        y_pred = estimator.predict(X)
        metrics[name] = label_metrics(score_fun, y_true, y_pred)
    return metrics