nlmaldonadog commited on
Commit
b8764af
1 Parent(s): 9b19d9b

:rocket: Deploy model

Browse files
Files changed (3) hide show
  1. README.md +13 -13
  2. app.py +19 -0
  3. requirements.txt +3 -0
README.md CHANGED
@@ -1,13 +1,13 @@
1
- ---
2
- title: Practica 8 Sec2sec
3
- emoji: 🦀
4
- colorFrom: green
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 4.31.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: Practica 8 Sec2sec
3
+ emoji: 🐨
4
+ colorFrom: green
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.18.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: apache-2.0
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
2
+ import gradio as gr
3
+ import torch
4
+
5
+ # Cargar el modelo
6
+ model_name = "nlmaldonadog/mbart-clarification-P8"
7
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+
10
+ def predict(text):
11
+ inputs = tokenizer(text, return_tensors='pt')
12
+ outputs = model(**inputs)
13
+ probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
14
+ return {'negative': float(probs[0][0]), 'neutral': float(probs[0][1]), 'positive': float(probs[0][2])}
15
+
16
+ texto = gr.inputs.Textbox(lines=2, placeholder='Escribe aquí...')
17
+
18
+ # Creamos la interfaz y la lanzamos.
19
+ gr.Interface(fn=predict, inputs=texto, outputs=gr.outputs.Label()).launch(share=False)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ fastai
2
+ toml
3
+ transformers