import numpy as np import matplotlib.pyplot as plt import numpy as np import matplotlib.pyplot as plt def triangle_lr_plot(lr_min, lr_max, step_size, iterations): lr_list = [] it_list = [j for j in range(iterations + 1)] for i in range(iterations + 1): half_cycle_count = np.floor(i/step_size) x = i - half_cycle_count * step_size if half_cycle_count % 2 == 0: lr = lr_min + x*(lr_max-lr_min)/step_size else: lr = lr_max - x*(lr_max-lr_min)/step_size lr_list.append(lr) fig, axs = plt.subplots(figsize=(5,5)) axs.plot(it_list, lr_list) plt.title("CLR - 'triangular' Policy") plt.xlabel("Iteration") plt.ylabel("Learning Rate") plt.show() def custom_one_cycle_lr(no_of_images, batch_size, base_lr, max_lr, final_lr, epoch_stage1=5, epoch_stage2=18, total_epochs=24): lr_schedule = lambda t: np.interp([t], [0, epoch_stage1, epoch_stage2, total_epochs], [base_lr, max_lr, base_lr, final_lr])[0] lr_lambda = lambda it: lr_schedule(it * batch_size/no_of_images) return lr_lambda def max_lr_finder_schedule(no_of_images, batch_size, base_lr, max_lr, total_epochs=5): lr_finder_schedule = lambda t: np.interp([t], [0, total_epochs], [base_lr, max_lr])[0] lr_finder_lambda = lambda it: lr_finder_schedule(it * batch_size/no_of_images) return lr_finder_lambda