import torch, torchvision from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from custom_resnet import Assignment12Resnet import random import os pl_model = Assignment12Resnet.load_from_checkpoint("epoch=22-step=4140.ckpt",map_location=torch.device("cpu")) inv_normalize = transforms.Normalize( mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], std=[1/0.23, 1/0.23, 1/0.23] ) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') model = pl_model.model model_dict = dict(zip([-3,-2,-1],[pl_model.model.layer3.transition_block.transition_block,pl_model.model.layer3.conv_block1.conv_bn_block,pl_model.model.layer3.conv_block2.conv_bn_block])) # Function to load images from a folder def load_images_from_folder(num_misclassified,folder=None): print(type(num_misclassified)) images = [] for filename in os.listdir(folder): if filename.endswith(".jpg") or filename.endswith(".png"): img = Image.open(os.path.join(folder, filename)) images.append(img) return random.choices(images, k=int(num_misclassified)) def inference(input_img, show_gradcam = True ,num_gradcam_images=1, target_layer_number =-1,opacity= 0.5,show_misclassified = True,num_misclassified_images =10,num_top_classes=3): #transform = pl_model.test_transform() org_img = input_img input_img = pl_model.test_transform(input_img) input_img = input_img.unsqueeze(0) model.eval() outputs = model(input_img) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} _, prediction = torch.max(outputs, 1) if show_gradcam: target_layers = model_dict[target_layer_number] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] img = input_img.squeeze(0) img = inv_normalize(img) rgb_img = np.transpose(img, (1, 2, 0)) rgb_img = rgb_img.numpy() visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=opacity) else: visualization = org_img misclassified_images = None if show_misclassified: misclassified_images = load_images_from_folder(num_misclassified_images,folder = './misclassified_images') return confidences, visualization, misclassified_images title = "CIFAR10 trained on Custom ResNet Model with GradCAM" description = "A simple Gradio interface to infer on Custom ResNet model and get GradCAM results" examples = [["cat.jpg",True,1,-2, 0.5, True,5,3], ["dog.jpg",True,1,-2, 0.5, True,5,3 ],["bird.jpg",True,1,-2, 0.5, True,5,3],["ship.jpg",True,1,-2, 0.5, True,5,3],["truck.jpg",True,1,-2, 0.5, True,5,3],["deer.jpg",True,1,-2, 0.5, True,5,3],["frog.jpg",True,1,-2, 0.5, True,5,3],["horse.jpg",True,1,-2, 0.5, True,5,3],["plane.jpg",True,1,-2, 0.5, True,5,3]] demo = gr.Interface(inference,inputs=[ gr.Image(shape=(32, 32)), gr.Checkbox(value=True,label="Show GradCAM Images",show_label=True), gr.Number(value=1, label="Number of GradCAM Images", minimum=1, maximum=1), gr.Slider(minimum = -3,maximum=-1, value=-1, step=1, label="Which Layer?"), gr.Slider(minimum =0, maximum = 1.0, value=0.5, label="Opacity of GradCAM"), gr.Checkbox(label="Show Misclassified Images", value=True,show_label=True), gr.Number(value=5, label="Number of Misclassified Images (max 10)", minimum=1, maximum=10), gr.Number(value=3, label="Number of Top Classes (max 10)", minimum=1, maximum=10) ], outputs=[ gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128), gr.Gallery(label="Misclassified Images") ], title=title, description=description, examples=examples, ) # Launch the Gradio interface demo.launch()