import streamlit as st import yfinance as yf import pandas as pd import cufflinks as cf import datetime # App title st.markdown(''' # Stock Price App Shown are the stock price data for query companies! **Credits** - App built by [Chanin Nantasenamat](https://medium.com/@chanin.nantasenamat) (aka [Data Professor](http://youtube.com/dataprofessor)) - Built in `Python` using `streamlit`,`yfinance`, `cufflinks`, `pandas` and `datetime` ''') st.write('---') # Sidebar st.sidebar.subheader('Query parameters') start_date = st.sidebar.date_input("Start date", datetime.date(2019, 1, 1)) end_date = st.sidebar.date_input("End date", datetime.date(2021, 1, 31)) # Retrieving tickers data ticker_list = pd.read_csv('https://raw.githubusercontent.com/dataprofessor/s-and-p-500-companies/master/data/constituents_symbols.txt') tickerSymbol = st.sidebar.selectbox('Stock ticker', ticker_list) # Select ticker symbol tickerData = yf.Ticker(tickerSymbol) # Get ticker data tickerDf = tickerData.history(period='1d', start=start_date, end=end_date) #get the historical prices for this ticker # Ticker information string_logo = '' % tickerData.info['logo_url'] st.markdown(string_logo, unsafe_allow_html=True) string_name = tickerData.info['longName'] st.header('**%s**' % string_name) string_summary = tickerData.info['longBusinessSummary'] st.info(string_summary) # Ticker data st.header('**Ticker data**') st.write(tickerDf) # Bollinger bands st.header('**Bollinger Bands**') qf=cf.QuantFig(tickerDf,title='First Quant Figure',legend='top',name='GS') qf.add_bollinger_bands() fig = qf.iplot(asFigure=True) st.plotly_chart(fig) #### #st.write('---') #st.write(tickerData.info)