import streamlit as st from transformers import pipeline import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") today = datetime.datetime.now() next_year = today.year + 1 jan_1 = datetime.date(next_year, 1, 1) dec_31 = datetime.date(next_year, 12, 31) d = st.date_input( "Select the date range", (jan_1, datetime.date(next_year, 1, 7)), jan_1, dec_31, format="MM.DD.YYYY", ) tokenizer = AutoTokenizer.from_pretrained("nickmuchi/sec-bert-finetuned-finance-classification") model = AutoModelForSequenceClassification.from_pretrained("nickmuchi/sec-bert-finetuned-finance-classification") pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=device) text = st.text_area("Enter some text") if text: out = pipe(text) st.json(out)