File size: 2,541 Bytes
2dd7bee
99561e6
 
 
f2f8150
7d98092
78198ac
99561e6
 
f20226d
 
99561e6
 
f20226d
99561e6
 
 
 
 
fee1685
 
9ca4b78
99561e6
f20226d
c953136
99561e6
f20226d
 
 
3eac012
c953136
f20226d
99561e6
c953136
 
 
 
 
 
5e200ff
f20226d
 
 
5e200ff
7d98092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6dcfb4
f45cc22
 
ab9e7de
ece7fec
9ca4b78
4ae28a7
ece7fec
67fdabf
0759c1f
f45cc22
 
7195026
df6aea0
40e2563
df6aea0
40e2563
7195026
7d98092
9ddf64a
 
f20226d
 
ed60e56
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import streamlit as st
import yfinance as yf
import pandas as pd
import cufflinks as cf
import datetime
import plotly.graph_objects as go

# App title
st.markdown('''
# Sovrenn Market Sentiment Indicator App
Shown are the stock price data for the selected company!

**Credits**
- App built by SRL
''')
st.write('---')

# Sidebar
st.sidebar.subheader('Query parameters')
start_date = st.sidebar.date_input("Start date", datetime.date(2023,9, 20))
#start_date = start_date - datetime.timedelta(days=1) 
end_date = start_date + datetime.timedelta(days=14)

# User input for the stock ticker symbol
tickerSymbol = st.sidebar.text_input('Enter Stock Ticker Symbol')

if tickerSymbol:
    tickerData = yf.Ticker(tickerSymbol)  # Get ticker data
    tickerDf = tickerData.history(period='1d', start=start_date, end=end_date)  # Get the historical prices for this ticker

    string_name = tickerData.info.get('longName', 'Company Name Not Available')
    st.header('**%s**' % string_name)

    # Try to get the business summary, handle KeyError if not available
    try:
        string_summary = tickerData.info['longBusinessSummary']
        st.info(string_summary)
    except KeyError:
        st.warning("Business summary not available for this company.")

    # Ticker data
    st.header('**Ticker data**')
    st.write(tickerDf)



    # Create a candlestick chart and volume bar chart
    fig_candlestick = go.Figure(data=[go.Candlestick(x=tickerDf.index,
                                                     open=tickerDf['Open'],
                                                     high=tickerDf['High'],
                                                     low=tickerDf['Low'],
                                                     close=tickerDf['Close'])])

    fig_volume = go.Figure(data=[go.Bar(x=tickerDf.index, y=tickerDf['Volume'])])

    st.header('**Candlestick Chart**')
    st.plotly_chart(fig_candlestick)

    st.header('**Volume Bar Chart**')
    st.plotly_chart(fig_volume)
    
    
    st.write(start_date)
    tickerDf = pd.DataFrame(tickerDf).reset_index()

#    st.write(tickerDf)

    #date = datetime.date(start_date)
    date_str = start_date.strftime("%Y-%m-%d")
    st.write(date_str)
    df = tickerDf[tickerDf["Date"]==date_str]
    st.write(df)

    if (df["Close"][0] > df["Open"][0] ):
        st.write("NSE has uptrend on " +date_str )
    if (df["Close"][0] < df["Open"][0] ):
        st.write(" NSE has downdtrend on " +date_str )




else:
    st.warning("Please enter a valid Stock Ticker Symbol.")