Spaces:
Runtime error
Runtime error
import os | |
import requests | |
import gradio as gr | |
from gradio_client import Client | |
import matplotlib.pyplot as plt | |
import io | |
from PIL import Image | |
import base64 | |
# Load Hugging Face token from environment variable | |
HF_TOKEN = os.getenv("HF_TOKEN", "your_default_hf_token") | |
def get_dynamic_endpoint(): | |
""" | |
Fetch the dynamic endpoint using the Hugging Face API. | |
Returns: | |
str: The current dynamic endpoint. | |
""" | |
api_url = "https://api.huggingface.co/space/duchaba/friendly-text-moderation" | |
headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
response = requests.get(api_url, headers=headers) | |
response.raise_for_status() # Raise an error for bad status codes | |
# Extract the endpoint from the response | |
data = response.json() | |
endpoint = data.get("url") | |
return endpoint | |
# Fetch the dynamic endpoint | |
dynamic_endpoint = get_dynamic_endpoint() | |
# Initialize the client with the dynamic endpoint | |
client = Client(dynamic_endpoint, hf_token=HF_TOKEN) | |
def moderate_text(text, safer_value): | |
""" | |
Moderates the given text using the Hugging Face API and returns the result and moderation pie chart. | |
Args: | |
text (str): The text to be moderated. | |
safer_value (float): The safer value for text moderation. | |
Returns: | |
result (dict): The moderation result. | |
img (PIL.Image): The moderation pie chart. | |
""" | |
result = client.predict( | |
text, | |
safer_value, | |
api_name="/censor_me" | |
) | |
# Example structure of the result | |
base64_data = result.get('plot', '').split(',')[1] | |
# Decode base64 to bytes | |
img_data = base64.b64decode(base64_data) | |
# Convert bytes to PIL Image | |
img = Image.open(io.BytesIO(img_data)) | |
return result, img | |
# Define the Gradio interface | |
demo = gr.Interface( | |
fn=moderate_text, | |
inputs=[ | |
gr.Textbox(label="Enter Text:", placeholder="Type your text here...", lines=5), | |
gr.Slider(minimum=0.005, maximum=0.1, value=0.005, label="Personalize Safer Value: (larger value is less safe)") | |
], | |
outputs=[ | |
gr.Textbox(label="Moderated Text:", lines=5), | |
gr.Image(type="pil", label="Moderation Pie Chart") | |
], | |
title="Friendly Text Moderator", | |
description="Enter text to be moderated and adjust the safer value to see how it affects the moderation.", | |
theme="compact" | |
) | |
# Customize the CSS | |
custom_css = """ | |
body { | |
background-color: #f5f5f5; | |
font-family: Arial, sans-serif; | |
} | |
.gradio-container { | |
max-width: 800px; | |
margin: auto; | |
padding: 20px; | |
background-color: white; | |
border: 1px solid #ddd; | |
border-radius: 8px; | |
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1); | |
} | |
.gr-button { | |
background-color: #4CAF50; | |
color: white; | |
} | |
.gr-button:hover { | |
background-color: #45a049; | |
} | |
""" | |
# Add the custom CSS to the Gradio app | |
demo.css = custom_css | |
# Launch the app | |
demo.launch() | |