Update DemoApp files for Hugging Face deployment
Browse files- Dockerfile +15 -0
- app.py +121 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV HOME=/home/user \
|
6 |
+
PATH=/home/user/.local/bin:$PATH
|
7 |
+
|
8 |
+
WORKDIR $HOME/app
|
9 |
+
|
10 |
+
COPY --chown=user requirements.txt .
|
11 |
+
RUN pip install --user -r requirements.txt
|
12 |
+
|
13 |
+
COPY --chown=user . .
|
14 |
+
|
15 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import chainlit as cl
|
3 |
+
from langchain.storage import LocalFileStore
|
4 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
5 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
7 |
+
from langchain_community.vectorstores import Qdrant
|
8 |
+
from langchain.embeddings import CacheBackedEmbeddings
|
9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
10 |
+
from langchain_core.runnables import RunnablePassthrough
|
11 |
+
from operator import itemgetter
|
12 |
+
from qdrant_client import QdrantClient
|
13 |
+
from qdrant_client.http.models import Distance, VectorParams
|
14 |
+
from langchain_core.globals import set_llm_cache
|
15 |
+
from langchain_core.caches import InMemoryCache
|
16 |
+
import shutil
|
17 |
+
|
18 |
+
# Initialize caches and embeddings
|
19 |
+
store = LocalFileStore("./cache/")
|
20 |
+
set_llm_cache(InMemoryCache())
|
21 |
+
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
|
22 |
+
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
|
23 |
+
core_embeddings, store, namespace=core_embeddings.model
|
24 |
+
)
|
25 |
+
|
26 |
+
# Initialize QDrant
|
27 |
+
collection_name = "production_pdf_collection"
|
28 |
+
client = QdrantClient(":memory:")
|
29 |
+
client.create_collection(
|
30 |
+
collection_name=collection_name,
|
31 |
+
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
|
32 |
+
)
|
33 |
+
|
34 |
+
# Initialize text splitter and chat model
|
35 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
36 |
+
chat_model = ChatOpenAI(model="gpt-3.5-turbo")
|
37 |
+
|
38 |
+
# RAG Prompt
|
39 |
+
rag_system_prompt_template = """
|
40 |
+
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existence of context.
|
41 |
+
"""
|
42 |
+
|
43 |
+
rag_user_prompt_template = """
|
44 |
+
Question:
|
45 |
+
{question}
|
46 |
+
Context:
|
47 |
+
{context}
|
48 |
+
"""
|
49 |
+
|
50 |
+
chat_prompt = ChatPromptTemplate.from_messages([
|
51 |
+
("system", rag_system_prompt_template),
|
52 |
+
("human", rag_user_prompt_template)
|
53 |
+
])
|
54 |
+
|
55 |
+
@cl.on_chat_start
|
56 |
+
async def on_chat_start():
|
57 |
+
await cl.Message("Welcome! Please upload a PDF file to begin.").send()
|
58 |
+
|
59 |
+
files = await cl.AskFileMessage(
|
60 |
+
content="Please upload a PDF file",
|
61 |
+
accept=["application/pdf"],
|
62 |
+
max_size_mb=20,
|
63 |
+
timeout=180,
|
64 |
+
).send()
|
65 |
+
|
66 |
+
if not files:
|
67 |
+
await cl.Message("No file was uploaded. Please refresh the page and try again.").send()
|
68 |
+
return
|
69 |
+
|
70 |
+
pdf_file = files[0]
|
71 |
+
await cl.Message(f"Processing '{pdf_file.name}'...").send()
|
72 |
+
|
73 |
+
try:
|
74 |
+
# Copy the uploaded file to a new location
|
75 |
+
temp_file_path = f"temp_{pdf_file.name}"
|
76 |
+
shutil.copy2(pdf_file.path, temp_file_path)
|
77 |
+
|
78 |
+
# Load and process the PDF
|
79 |
+
loader = PyMuPDFLoader(temp_file_path)
|
80 |
+
documents = loader.load()
|
81 |
+
docs = text_splitter.split_documents(documents)
|
82 |
+
for i, doc in enumerate(docs):
|
83 |
+
doc.metadata["source"] = f"source_{i}"
|
84 |
+
|
85 |
+
# Initialize Qdrant vector store
|
86 |
+
vectorstore = Qdrant(
|
87 |
+
client=client,
|
88 |
+
collection_name=collection_name,
|
89 |
+
embeddings=cached_embedder)
|
90 |
+
vectorstore.add_documents(docs)
|
91 |
+
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
|
92 |
+
|
93 |
+
# Create the RAG chain
|
94 |
+
rag_chain = (
|
95 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
96 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
97 |
+
| chat_prompt
|
98 |
+
| chat_model
|
99 |
+
)
|
100 |
+
|
101 |
+
cl.user_session.set("rag_chain", rag_chain)
|
102 |
+
await cl.Message(f"PDF '{pdf_file.name}' has been processed. You can now ask questions about its content.").send()
|
103 |
+
|
104 |
+
# Clean up: remove the temporary file
|
105 |
+
os.remove(temp_file_path)
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
await cl.Message(f"An error occurred while processing the PDF. Please try again.").send()
|
109 |
+
|
110 |
+
@cl.on_message
|
111 |
+
async def on_message(message: cl.Message):
|
112 |
+
rag_chain = cl.user_session.get("rag_chain")
|
113 |
+
if rag_chain is None:
|
114 |
+
await cl.Message("Please upload a PDF file first.").send()
|
115 |
+
return
|
116 |
+
|
117 |
+
try:
|
118 |
+
response = await cl.make_async(rag_chain.invoke)({"question": message.content})
|
119 |
+
await cl.Message(content=response.content).send()
|
120 |
+
except Exception as e:
|
121 |
+
await cl.Message("An error occurred while processing your question. Please try again.").send()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chainlit==0.7.700
|
2 |
+
langchain==0.3.0
|
3 |
+
langchain-openai==0.2.0
|
4 |
+
langchain-community==0.3.0
|
5 |
+
qdrant-client==1.11.2
|
6 |
+
pymupdf==1.24.10
|
7 |
+
fastapi
|
8 |
+
uvicorn[standard]
|