import gradio as gr from transformers import AutoModel, AutoProcessor from PIL import Image import torch # Load model and processor model = AutoModel.from_pretrained("zxhezexin/openlrm-mix-large-1.1") processor = AutoProcessor.from_pretrained("zxhezexin/openlrm-mix-large-1.1") # Define function to generate 3D output from 2D image def image_to_3d(image): inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # This is placeholder logic; you'd need to process the outputs appropriately return "3D Output Generated" # Replace with actual visualization code # Gradio interface interface = gr.Interface( fn=image_to_3d, inputs=gr.Image(type="pil"), outputs="text", # Replace with "3D" if you can visualize the output title="OpenLRM Mix-Large 1.1 - Image to 3D" ) interface.launch()