|
import gradio as gr |
|
from transformers import AutoModel, AutoProcessor |
|
from PIL import Image |
|
import torch |
|
import requests |
|
from io import BytesIO |
|
import trimesh |
|
import plotly.graph_objects as go |
|
|
|
|
|
|
|
|
|
def load_model_and_processor(): |
|
try: |
|
model = AutoModel.from_pretrained("zxhezexin/openlrm-mix-large-1.1") |
|
processor = AutoProcessor.from_pretrained("zxhezexin/openlrm-mix-large-1.1") |
|
return model, processor |
|
except Exception as e: |
|
print(f"Error loading model or processor: {e}") |
|
return None, None |
|
|
|
model, processor = load_model_and_processor() |
|
|
|
|
|
example_image_url = "https://huggingface.co./datasets/nateraw/image-folder/resolve/main/example_1.png" |
|
|
|
|
|
def load_example_image(): |
|
try: |
|
response = requests.get(example_image_url) |
|
image = Image.open(BytesIO(response.content)) |
|
return image |
|
except Exception as e: |
|
print(f"Error loading example image: {e}") |
|
return None |
|
|
|
|
|
def image_to_3d(image): |
|
if processor is None or model is None: |
|
return "Model or processor not loaded." |
|
|
|
try: |
|
|
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
|
|
|
|
vertices = outputs['vertices'].numpy() |
|
faces = outputs['faces'].numpy() |
|
|
|
|
|
mesh = trimesh.Trimesh(vertices=vertices, faces=faces) |
|
|
|
|
|
fig = go.Figure(data=[go.Mesh3d(x=vertices[:,0], y=vertices[:,1], z=vertices[:,2], |
|
i=faces[:,0], j=faces[:,1], k=faces[:,2])]) |
|
|
|
return fig |
|
except Exception as e: |
|
return f"Error during inference: {str(e)}" |
|
|
|
|
|
example_image = load_example_image() |
|
|
|
|
|
interface = gr.Interface( |
|
fn=image_to_3d, |
|
inputs=gr.Image(type="pil", label="Upload an Image"), |
|
outputs=gr.Plot(label="3D Model"), |
|
title="OpenLRM Mix-Large 1.1 - Image to 3D", |
|
description="Upload an image to generate a 3D model using OpenLRM Mix-Large 1.1.", |
|
examples=[[example_image]] if example_image else None, |
|
theme="compact" |
|
) |
|
|
|
|
|
interface.launch() |
|
|