ninagala's picture
Initial commit
cd1c48a
import math
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
import torch.nn.functional as F
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
return self.weight * x
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
class RotaryEmbedding(nn.Module):
def __init__(self, dim: int, max_position_embeddings: int = 2048, base: int = 10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.max_seq_len_cached = max_position_embeddings
t = torch.arange(self.max_seq_len_cached).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :])
self.register_buffer("sin_cached", emb.sin()[None, None, :, :])
def forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :])
self.register_buffer("sin_cached", emb.sin()[None, None, :, :])
return (
self.cos_cached[:, :, :seq_len, ...],
self.sin_cached[:, :, :seq_len, ...]
)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None):
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = F.silu
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.rotary_emb = RotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=config.rope_theta,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, seq_len=q_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if self.num_key_value_heads != self.num_heads:
key_states = torch.repeat_interleave(key_states, self.num_heads // self.num_key_value_heads, dim=1)
value_states = torch.repeat_interleave(value_states, self.num_heads // self.num_key_value_heads, dim=1)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output
class SmolLM2Block(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Attention(config)
self.mlp = MLP(config)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# MLP
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SmolLM2Model(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.hidden_size = config.hidden_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([SmolLM2Block(config) for _ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# Add gradient checkpointing flag
self.gradient_checkpointing = False
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.Tensor:
if input_ids is not None:
batch_size, seq_length = input_ids.shape
else:
batch_size, seq_length = inputs_embeds.shape[:2]
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if self.gradient_checkpointing and self.training:
for layer in self.layers:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer),
hidden_states,
attention_mask,
position_ids,
None, # past_key_value
False, # output_attentions
False, # use_cache
)
else:
for layer in self.layers:
hidden_states = layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=None,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = self.norm(hidden_states)
return hidden_states
class SmolLM2ForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.model = SmolLM2Model(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def post_init(self):
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.Tensor:
hidden_states = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss = F.cross_entropy(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
return logits, loss