Spaces:
Sleeping
Sleeping
import math | |
from typing import Optional, Tuple, List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-5): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
variance = x.pow(2).mean(-1, keepdim=True) | |
x = x * torch.rsqrt(variance + self.eps) | |
return self.weight * x | |
def rotate_half(x): | |
x1, x2 = x.chunk(2, dim=-1) | |
return torch.cat((-x2, x1), dim=-1) | |
class RotaryEmbedding(nn.Module): | |
def __init__(self, dim: int, max_position_embeddings: int = 2048, base: int = 10000): | |
super().__init__() | |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
self.max_seq_len_cached = max_position_embeddings | |
t = torch.arange(self.max_seq_len_cached).type_as(self.inv_freq) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :]) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :]) | |
def forward(self, x, seq_len=None): | |
if seq_len > self.max_seq_len_cached: | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached).type_as(self.inv_freq) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :]) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :]) | |
return ( | |
self.cos_cached[:, :, :seq_len, ...], | |
self.sin_cached[:, :, :seq_len, ...] | |
) | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None): | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | |
self.act_fn = F.silu | |
def forward(self, x): | |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
class Attention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = config.hidden_size // config.num_attention_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.rotary_emb = RotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=config.rope_theta, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
cos, sin = self.rotary_emb(value_states, seq_len=q_len) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if self.num_key_value_heads != self.num_heads: | |
key_states = torch.repeat_interleave(key_states, self.num_heads // self.num_key_value_heads, dim=1) | |
value_states = torch.repeat_interleave(value_states, self.num_heads // self.num_key_value_heads, dim=1) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: | |
attn_weights = attn_weights + attention_mask | |
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_output = torch.matmul(attn_weights, value_states) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output | |
class SmolLM2Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = Attention(config) | |
self.mlp = MLP(config) | |
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = residual + hidden_states | |
# MLP | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
return hidden_states | |
class SmolLM2Model(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.vocab_size = config.vocab_size | |
self.hidden_size = config.hidden_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.layers = nn.ModuleList([SmolLM2Block(config) for _ in range(config.num_hidden_layers)]) | |
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
# Add gradient checkpointing flag | |
self.gradient_checkpointing = False | |
# Initialize weights | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
def forward( | |
self, | |
input_ids: torch.LongTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.Tensor: | |
if input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
else: | |
batch_size, seq_length = inputs_embeds.shape[:2] | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange(seq_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0).expand(batch_size, -1) | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
hidden_states = inputs_embeds | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if self.gradient_checkpointing and self.training: | |
for layer in self.layers: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(layer), | |
hidden_states, | |
attention_mask, | |
position_ids, | |
None, # past_key_value | |
False, # output_attentions | |
False, # use_cache | |
) | |
else: | |
for layer in self.layers: | |
hidden_states = layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=None, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = self.norm(hidden_states) | |
return hidden_states | |
class SmolLM2ForCausalLM(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.model = SmolLM2Model(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def post_init(self): | |
if self.config.tie_word_embeddings: | |
self.lm_head.weight = self.model.embed_tokens.weight | |
def forward( | |
self, | |
input_ids: torch.LongTensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> torch.Tensor: | |
hidden_states = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
loss = F.cross_entropy(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
return logits, loss |