File size: 4,075 Bytes
355b7d6
 
 
 
 
ab382f0
355b7d6
ab382f0
 
 
a1b2c23
355b7d6
8f997e4
57ab467
ab382f0
 
 
207731c
 
 
 
3b4a08d
355b7d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab382f0
 
355b7d6
2ae46d7
a637d3e
f9d021c
a637d3e
 
51f57d5
f9d021c
51f57d5
 
f9d021c
a637d3e
2ae46d7
a637d3e
2ae46d7
355b7d6
2ae46d7
 
 
 
 
 
355b7d6
 
2ae46d7
 
 
 
 
 
a637d3e
2ae46d7
 
 
 
 
 
a637d3e
 
5a07c64
3b4a08d
2ae46d7
355b7d6
 
 
 
 
 
 
 
 
 
8f997e4
a1b2c23
 
355b7d6
 
 
80d5294
 
 
 
355b7d6
 
 
80d5294
 
00ab235
21937b0
 
80d5294
 
 
 
bcd2a0f
355b7d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

import json
import subprocess
from threading import Thread

import torch
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer

#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
CHAT_TEMPLATE = "َAuto"
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 16000


COLOR = "black"  
EMOJI = "🤖"  
DESCRIPTION = f"This is  {MODEL_NAME} model designed for testing thinking for general AI tasks."  # Descripción predeterminada

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }, {
        "left": "\\begin{alignat}",
        "right": "\\end{alignat}",
        "display": True
    }, {
        "left": "\\begin{gather}",
        "right": "\\end{gather}",
        "display": True
    }, {
        "left": "\\begin{CD}",
        "right": "\\end{CD}",
        "display": True
    }, {
        "left": "\\[",
        "right": "\\]",
        "display": True
    }]


@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
    # Format history with a given chat template
    
    
    stop_tokens = ["<|endoftext|>", "<|im_end|>","|im_end|"]
    instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
    for user, assistant in history:
        instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
    instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
    
    print(instruction)
    
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
    input_ids, attention_mask = enc.input_ids, enc.attention_mask

    if input_ids.shape[1] > CONTEXT_LENGTH:
        input_ids = input_ids[:, -CONTEXT_LENGTH:]
        attention_mask = attention_mask[:, -CONTEXT_LENGTH:]

    generate_kwargs = dict(
        input_ids=input_ids.to(device),
        attention_mask=attention_mask.to(device),
        streamer=streamer,
        do_sample=True,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        top_p=top_p
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    outputs = []
    for new_token in streamer:
        outputs.append(new_token)
        if new_token in stop_tokens:
            
            break
        yield "".join(outputs)

# Load model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    device_map="auto",
    #quantization_config=quantization_config,
    #attn_implementation="flash_attention_2",
    
)

# Create Gradio interface
gr.ChatInterface(
    predict,
    title=EMOJI + " " + MODEL_NAME,
    description=DESCRIPTION,
    

     
    additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
    additional_inputs=[
        gr.Textbox("You are a useful assistant. first recognize user request and then reply carfuly and thinking", label="System prompt"),
        gr.Slider(0, 1, 0.6, label="Temperature"),
        gr.Slider(0, 32000, 10000, label="Max new tokens"),
        gr.Slider(1, 80, 40, label="Top K sampling"),
        gr.Slider(0, 2, 1.1, label="Repetition penalty"),
        gr.Slider(0, 1, 0.95, label="Top P sampling"),
    ],
    #theme=gr.themes.Soft(primary_hue=COLOR),
).queue().launch()