Spaces:
Runtime error
Runtime error
File size: 3,788 Bytes
3bb7e94 47bea4f 3bb7e94 754fee2 3bb7e94 754fee2 3525af8 47bea4f 754fee2 47bea4f 3bb7e94 47bea4f 40c6228 3bb7e94 40c6228 3bb7e94 47bea4f 3bb7e94 c6bb3c2 3bb7e94 c6bb3c2 3bb7e94 c6bb3c2 3bb7e94 47bea4f 149cbb5 3bb7e94 47bea4f 3bb7e94 47bea4f 3bb7e94 47bea4f 3bb7e94 47bea4f 3bb7e94 754fee2 3bb7e94 754fee2 3bb7e94 754fee2 3bb7e94 754fee2 3bb7e94 754fee2 3bb7e94 754fee2 3bb7e94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import gradio as gr
#import torch
#from torch import autocast // only for GPU
from PIL import Image
import numpy as np
from io import BytesIO
import os
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
from diffusers import StableDiffusionImg2ImgPipeline
print("hello sylvain")
YOUR_TOKEN=MY_SECRET_TOKEN
device="cpu"
#prompt_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
#prompt_pipe.to(device)
img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
img_pipe.to(device)
source_img = gr.Image(source="upload", type="filepath", label="init_img | 512*512 px")
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
def resize(w_val,l_val,img):
#baseheight = value
img = Image.open(img)
#hpercent = (baseheight/float(img.size[1]))
#wsize = int((float(img.size[0])*float(hpercent)))
#img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS)
img = img.resize((w_val,l_val), Image.Resampling.LANCZOS)
return img
#init_image = init_image.resize((768, 512))
def infer(prompt, source_img):
source_image = resize(512, 512, source_img)
source_image.save('source.png')
images_list = img_pipe([prompt] * 2, init_image=source_image, strength=0.75)
images = []
safe_image = Image.open(r"unsafe.png")
for i, image in enumerate(images_list["sample"]):
if(images_list["nsfw_content_detected"][i]):
images.append(safe_image)
else:
images.append(image)
return images
print("Great sylvain ! Everything is working fine !")
title="Img2Img Stable Diffusion CPU"
description="Img2Img Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b>"
gr.Interface(fn=infer, inputs=["text", source_img], outputs=gallery,title=title,description=description).queue(max_size=100).launch(enable_queue=True)
#from torch import autocast
#import requests
#import torch
#from PIL import Image
#from io import BytesIO
#import os
#MY_SECRET_TOKEN = os.environ.get('HF_TOKEN_SD')
#from diffusers import StableDiffusionImg2ImgPipeline
#YOUR_TOKEN = MY_SECRET_TOKEN
# load the pipeline
#device = "cuda"
#model_id_or_path = "CompVis/stable-diffusion-v1-4"
# pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token = YOUR_TOKEN)
#pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
# model_id_or_path,
# revision="fp16",
# torch_dtype=torch.float16,
# use_auth_token=YOUR_TOKEN
#)
# or download via git clone https://huggingface.co./CompVis/stable-diffusion-v1-4
# and pass `model_id_or_path="./stable-diffusion-v1-4"` without having to use `use_auth_token=True`.
#pipe = pipe.to(device)
# let's download an initial image
#url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
#response = requests.get(url)
#init_image = Image.open(BytesIO(response.content)).convert("RGB")
#init_image = init_image.resize((768, 512))
#prompt = "Lively, illustration of a [[[<king::4>]]], portrait, fantasy, intricate, Scenic, hyperdetailed, hyper realistic <king-hearthstone>, unreal engine, 4k, smooth, sharp focus, intricate, cinematic lighting, highly detailed, octane, digital painting, artstation, concept art, vibrant colors, Cinema4D, WLOP, 3d render, in the style of hearthstone::5 art by Artgerm and greg rutkowski and magali villeneuve, martina jackova, Giger"
#with autocast("cuda"):
# images = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images
#images[0].save("fantasy_landscape.png") |