CFA_Level_1_GPT / app.py
nickmuchi's picture
Update app.py
7614cb1
import os
import streamlit as st
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores.faiss import FAISS
from huggingface_hub import snapshot_download
from langchain.callbacks import StreamlitCallbackHandler
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (
AgentTokenBufferMemory,
)
from langchain.chat_models import ChatOpenAI
from langchain.schema import SystemMessage, AIMessage, HumanMessage
from langchain.prompts import MessagesPlaceholder
from langsmith import Client
client = Client()
st.set_page_config(
page_title="Chat with CFA Level 1",
page_icon="πŸ“–",
layout="wide",
initial_sidebar_state="collapsed",
)
#Load API Key
api_key = os.environ["OPENAI_API_KEY"]
#### sidebar section 1 ####
with st.sidebar:
book = st.radio("Embedding Model: ",
["Sbert"]
)
#load embedding models
@st.cache_resource
def load_embedding_models(model):
if model == 'Sbert':
model_sbert = "sentence-transformers/all-mpnet-base-v2"
emb = HuggingFaceEmbeddings(model_name=model_sbert)
elif model == 'Instruct':
embed_instruction = "Represent the financial paragraph for document retrieval: "
query_instruction = "Represent the question for retrieving supporting documents: "
model_instr = "hkunlp/instructor-large"
emb = HuggingFaceInstructEmbeddings(model_name=model_instr,
embed_instruction=embed_instruction,
query_instruction=query_instruction)
return emb
embeddings = load_embedding_models(book)
##### functionss ####
@st.cache_data
def load_vectorstore(_embeddings):
# download from hugging face
cache_dir="cfa_level_1_cache"
snapshot_download(repo_id="nickmuchi/CFA_Level_1_Text_Embeddings",
repo_type="dataset",
revision="main",
allow_patterns="CFA_Level_1/*",
cache_dir=cache_dir,
)
target_dir = "CFA_Level_1"
# Walk through the directory tree recursively
for root, dirs, files in os.walk(cache_dir):
# Check if the target directory is in the list of directories
if target_dir in dirs:
# Get the full path of the target directory
target_path = os.path.join(root, target_dir)
print(target_path)
# load faiss
vectorstore = FAISS.load_local(folder_path=target_path, embeddings=_embeddings)
return vectorstore.as_retriever(search_kwargs={"k": 4})
tool = create_retriever_tool(
load_vectorstore(embeddings),
"search_cfa_docs",
"Searches and returns documents regarding the CFA level 1 curriculum. CFA is a rigorous program for investment professionals which covers topics such as ethics, corporate finance, economics, fixed income, equities and derivatives markets. You do not know anything about the CFA program, so if you are ever asked about CFA material or curriculum you should use this tool.",
)
tools = [tool]
llm = ChatOpenAI(temperature=0, streaming=True, model="gpt-4")
message = SystemMessage(
content=(
"You are a helpful CFA level 1 chatbot who is tasked with answering questions about the CFA level 1 program. "
"Do not answer any question that is not related to the CFA program or finance."
"If there is any ambiguity, politely decline to answer the question."
)
)
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=message,
extra_prompt_messages=[MessagesPlaceholder(variable_name="history")],
)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
return_intermediate_steps=True,
)
memory = AgentTokenBufferMemory(llm=llm)
starter_message = "Ask me anything about the CFA Level 1 Curriculum!"
if "messages" not in st.session_state or st.sidebar.button("Clear message history"):
st.session_state["messages"] = [AIMessage(content=starter_message)]
def send_feedback(run_id, score):
client.create_feedback(run_id, "user_score", score=score)
for msg in st.session_state.messages:
if isinstance(msg, AIMessage):
st.chat_message("assistant").write(msg.content)
elif isinstance(msg, HumanMessage):
st.chat_message("user").write(msg.content)
memory.chat_memory.add_message(msg)
if prompt := st.chat_input(placeholder=starter_message):
st.chat_message("user").write(prompt)
with st.chat_message("assistant"):
st_callback = StreamlitCallbackHandler(st.container())
response = agent_executor(
{"input": prompt, "history": st.session_state.messages},
callbacks=[st_callback],
include_run_info=True,
)
st.session_state.messages.append(AIMessage(content=response["output"]))
st.write(response["output"])
memory.save_context({"input": prompt}, response)
st.session_state["messages"] = memory.buffer
run_id = response["__run"].run_id
col_blank, col_text, col1, col2 = st.columns([10, 2, 1, 1])
with col_text:
st.text("Feedback:")
# with col1:
# st.button("πŸ‘", on_click=send_feedback, args=(run_id, 1))
# with col2:
# st.button("πŸ‘Ž", on_click=send_feedback, args=(run_id, 0))