Spaces:
Runtime error
Runtime error
File size: 4,528 Bytes
171d6cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Indus-1.1B-IT</h1>
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co./nickmalhotra/ProjectIndus"><b>Indus-1.1B Chat</b></a>. </p>
</div>
'''
LICENSE = """
<p/>
---
Built with Indus-1.1B
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/6487cdf797aa6cda66c94333/vfga6e-PkbFnqe4_STBaL.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Indus</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nickmalhotra/ProjectIndus", token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained("nickmalhotra/ProjectIndus", token=HF_TOKEN, device_map="auto") # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
]
@spaces.GPU(duration=120)
def chat_indus_1b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the Indus-1.1B model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation,add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_indus_1b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=1024,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['भारत में होली का महत्व क्या है?'],
['भारत के वर्तमान प्रधानमंत्री कौन हैं?']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
|