AITableQA / app.py
nhosseini's picture
add app
8890d1c verified
raw
history blame
3.95 kB
import gradio as gr
import pandas as pd
from transformers import TapexTokenizer, BartForConditionalGeneration, pipeline
# Initialize TAPEX (Microsoft) model and tokenizer
tokenizer_tapex = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq")
model_tapex = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq")
# Initialize TAPAS (Google) models and pipelines
pipe_tapas = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
pipe_tapas2 = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wikisql-supervised")
def process_table_query(query, table_data):
"""
Process a query and CSV data using TAPEX.
"""
# Convert all columns in the table to strings for TAPEX compatibility
table_data = table_data.astype(str)
# Microsoft TAPEX model (using TAPEX tokenizer and model)
encoding = tokenizer_tapex(table=table_data, query=query, return_tensors="pt", max_length=1024, truncation=True)
outputs = model_tapex.generate(**encoding)
result_tapex = tokenizer_tapex.batch_decode(outputs, skip_special_tokens=True)[0]
return result_tapex
# Gradio interface
def answer_query_from_csv(query, file):
"""
Function to handle file input and return model results.
"""
# Read the file into a DataFrame
table_data = pd.read_csv(file)
# Convert object-type columns to lowercase (if they are valid strings)
for column in table_data.columns:
if table_data[column].dtype == 'object':
table_data[column] = table_data[column].apply(lambda x: x.lower() if isinstance(x, str) else x)
# Convert all table cells to strings for TAPEX compatibility
table_data = table_data.astype(str)
# Extract year, month, day, and time components for datetime columns
for column in table_data.columns:
if pd.api.types.is_datetime64_any_dtype(table_data[column]):
table_data[f'{column}_year'] = table_data[column].dt.year
table_data[f'{column}_month'] = table_data[column].dt.month
table_data[f'{column}_day'] = table_data[column].dt.day
table_data[f'{column}_time'] = table_data[column].dt.strftime('%H:%M:%S')
# Process the CSV file and query
result_tapex = process_table_query(query, table_data)
# Process the query using TAPAS pipelines
result_tapas = pipe_tapas(table=table_data, query=query)['cells'][0]
result_tapas2 = pipe_tapas2(table=table_data, query=query)['cells'][0]
return result_tapex, result_tapas, result_tapas2
# Create Gradio interface
with gr.Blocks() as interface:
gr.Markdown("# Table Question Answering with TAPEX and TAPAS Models")
# Add a notice about the token limit
gr.Markdown("### Note: Only the first 1024 tokens (query + table data) will be considered. If your table is too large, it will be truncated to fit within this limit.")
# Two-column layout (input on the left, output on the right)
with gr.Row():
with gr.Column():
# Input fields for the query and file
query_input = gr.Textbox(label="Enter your query:")
csv_input = gr.File(label="Upload your CSV file")
with gr.Column():
# Output textboxes for the answers
result_tapex = gr.Textbox(label="TAPEX Answer")
result_tapas = gr.Textbox(label="TAPAS (WikiTableQuestions) Answer")
result_tapas2 = gr.Textbox(label="TAPAS (WikiSQL) Answer")
# Submit button
submit_btn = gr.Button("Submit")
# Action when submit button is clicked
submit_btn.click(
fn=answer_query_from_csv,
inputs=[query_input, csv_input],
outputs=[result_tapex, result_tapas, result_tapas2]
)
# Launch the Gradio interface
interface.launch(share=True)