import torch import gradio as gr import pytube as pt from transformers import pipeline MODEL_NAME = "openai/whisper-large-v2" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_ATTEMPT_LIMIT = 3 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) all_special_ids = pipe.tokenizer.all_special_ids transcribe_token_id = all_special_ids[-5] translate_token_id = all_special_ids[-6] def transcribe(microphone, file_upload, task): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): raise gr.Error("You have to either use the microphone or upload an audio file") file_size_mb = os.stat(inputs).st_size / (1024 * 1024) if file_size_mb > FILE_LIMIT_MB: raise gr.Error( f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB." ) file = microphone if microphone is not None else file_upload pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] text = pipe(file, batch_size=BATCH_SIZE)["text"] return warn_output + text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def yt_transcribe(yt_url, task, max_filesize=75.0): yt = pt.YouTube(yt_url) html_embed_str = _return_yt_html_embed(yt_url) for attempt in range(YT_ATTEMPT_LIMIT): try: yt = pytube.YouTube(yt_url) stream = yt.streams.filter(only_audio=True)[0] break except KeyError: if attempt + 1 == YT_ATTEMPT_LIMIT: raise gr.Error("An error occurred while loading the YouTube video. Please try again.") if stream.filesize_mb > max_filesize: raise gr.Error(f"Maximum YouTube file size is {max_filesize}MB, got {stream.filesize_mb:.2f}MB.") pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] text = pipe("audio.mp3", batch_size=BATCH_SIZE)["text"] return html_embed_str, text demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath", optional=True), gr.inputs.Audio(source="upload", type="filepath", optional=True), gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"), ], outputs="text", layout="horizontal", theme="huggingface", title="Whisper Large V2: Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe") ], outputs=["html", "text"], layout="horizontal", theme="huggingface", title="Whisper Large V2: Transcribe YouTube", description=( "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" " arbitrary length." ), allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) demo.launch(enable_queue=True)