Spaces:
Runtime error
Runtime error
File size: 5,397 Bytes
6c226f9 3b293ec 6c226f9 3b293ec 6c226f9 a5bfe25 6c226f9 3b293ec 6c226f9 3b293ec 6c226f9 d790c0b 3b293ec 6c226f9 3b293ec 66efbc3 3b293ec 0a7fcda 3b293ec 6c226f9 3b293ec 6c226f9 3b293ec 3c0cd8e 3b293ec 3c0cd8e 3b293ec 6c226f9 7097513 3b293ec 7097513 6c226f9 3b293ec 6c226f9 3b293ec 6c226f9 3b293ec 6c226f9 3b293ec 6c226f9 7097513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import torch
# from PIL import Image
import gradio as gr
import pytube as pt
from transformers import pipeline
MODEL_NAME = "openai/whisper-large-v3"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
all_special_ids = pipe.tokenizer.all_special_ids
transcribe_token_id = all_special_ids[-5]
translate_token_id = all_special_ids[-6]
def transcribe(microphone, file_upload, task):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"警告:您已经上传了一个音频文件并使用了麦克录制。"
"录制文件将被使用上传的音频将被丢弃。\n"
)
elif (microphone is None) and (file_upload is None):
return "错误: 您必须使用麦克风录制或上传音频文件"
file = microphone if microphone is not None else file_upload
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
# text = pipe(file, return_timestamps=True)["text"]
text = pipe(file, return_timestamps=True)
#trans to SRT
text= convert_to_srt(text)
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url, task):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]]
text = pipe("audio.mp3",return_timestamps=True)
# text = pipe("audio.mp3",return_timestamps=True)["text"]
#trans to SRT
text= convert_to_srt(text)
return html_embed_str, text
# Assuming srt format is a sequence of subtitles with index, time range and text
def convert_to_srt(input):
output = ""
index = 1
for chunk in input["chunks"]:
start, end = chunk["timestamp"]
text = chunk["text"]
if end is None:
end = "None"
# Convert seconds to hours:minutes:seconds,milliseconds format
start = format_time(start)
end = format_time(end)
output += f"{index}\n{start} --> {end}\n{text}\n\n"
index += 1
return output
# Helper function to format time
def format_time(seconds):
if seconds == "None":
return seconds
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
seconds = int(seconds % 60)
milliseconds = int((seconds % 1) * 1000)
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="Audio-to-Text-SRT 自动生成字幕",
description=(
"直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
f" 模型 [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的"
"音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”。"
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.inputs.Radio(["转译", "翻译"], label="Task", default="transcribe")
],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title="Audio-to-Text-SRT 自动生成字幕",
description=(
"直接在网页录音或上传音频文件,加入Youtube连接,轻松转换为文字和字幕格式! 本演示采用"
f" 模型 [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) 和 🤗 Transformers 转换任意长度的"
"音视频文件!使用GPU转换效率会大幅提高,大约每小时 $0.6 约相当于人民币 5 元。如果您有较长内容,需要更快的转换速度,请私信作者微信 1259388,并备注“语音转文字”。"
),
allow_flagging="never",
)
# # Load the images
# image1 = Image("wechatqrcode.jpg")
# image2 = Image("paypalqrcode.png")
# # Define a function that returns the images and captions
# def display_images():
# return image1, "WeChat Pay", image2, "PayPal"
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["转译音频成文字", "YouTube转字幕"])
# Create a gradio interface with no inputs and four outputs
# gr.Interface(display_images, [], [gr.outputs.Image(), gr.outputs.Textbox(), gr.outputs.Image(), gr.outputs.Textbox()], layout="horizontal").launch()
demo.launch(enable_queue=True)
|