import os import shutil import urllib.request import zipfile import gdown import requests import gradio as gr from mega import Mega BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) rvc_models_dir = os.path.join(BASE_DIR, 'rvc_models') def ignore_files(models_dir): models_list = os.listdir(models_dir) items_to_remove = ['hubert_base.pt', 'MODELS.txt', 'rmvpe.pt', 'fcpe.pt'] return [item for item in models_list if item not in items_to_remove] def update_models_list(): models_l = ignore_files(rvc_models_dir) return gr.update(choices=models_l) def extract_zip(extraction_folder, zip_name): os.makedirs(extraction_folder, exist_ok=True) with zipfile.ZipFile(zip_name, 'r') as zip_ref: zip_ref.extractall(extraction_folder) os.remove(zip_name) index_filepath, model_filepath = None, None for root, _, files in os.walk(extraction_folder): for name in files: if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100: index_filepath = os.path.join(root, name) if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40: model_filepath = os.path.join(root, name) if not model_filepath: raise gr.Error(f'The .pth model file was not found in the unzipped zip file. Please check the {extraction_folder}.') os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath))) if index_filepath: os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath))) for filepath in os.listdir(extraction_folder): if os.path.isdir(os.path.join(extraction_folder, filepath)): shutil.rmtree(os.path.join(extraction_folder, filepath)) def download_from_url(url, dir_name, progress=gr.Progress()): try: progress(0, desc=f'[~] Downloading voice model named {dir_name}...') zip_name = os.path.join(rvc_models_dir, dir_name + '.zip') extraction_folder = os.path.join(rvc_models_dir, dir_name) if os.path.exists(extraction_folder): raise gr.Error(f'The voice model directory {dir_name} already exists! Please choose a different name for your voice model.') if 'drive.google.com' in url: progress(0.5, desc='[~] Downloading model from Google Grive...') file_id = url.split("file/d/")[1].split("/")[0] if "file/d/" in url else url.split("id=")[1].split("&")[0] output = zip_name gdown.download(id=file_id, output=output, quiet=False) elif 'huggingface.co' in url: progress(0.5, desc='[~] Downloading model from HuggingFace...') urllib.request.urlretrieve(url, zip_name) elif 'pixeldrain.com' in url: progress(0.5, desc='[~] Downloading model from Pixeldrain...') file_id = url.split("pixeldrain.com/u/")[1] response = requests.get(f"https://pixeldrain.com/api/file/{file_id}") with open(zip_name, 'wb') as f: f.write(response.content) elif 'mega.nz' in url: progress(0.5, desc='[~] Downloading model from Mega...') m = Mega() m.download_url(url, dest_filename=zip_name) elif 'yadi.sk' in url or 'disk.yandex.ru' in url: progress(0.5, desc='[~] Downloading model from Yandex Disk...') yandex_api_url = "https://cloud-api.yandex.net/v1/disk/public/resources/download?public_key={}".format(url) response = requests.get(yandex_api_url) if response.status_code == 200: download_link = response.json().get('href') urllib.request.urlretrieve(download_link, zip_name) else: raise gr.Error(f"Error when receiving a download link from Yandex Disk: {response.status_code}") progress(0.8, desc='[~] Extracting zip file...') extract_zip(extraction_folder, zip_name) return f'[+] The {dir_name} model was loaded successfully!' except Exception as e: raise gr.Error(str(e)) def upload_zip_model(zip_path, dir_name, progress=gr.Progress()): try: extraction_folder = os.path.join(rvc_models_dir, dir_name) if os.path.exists(extraction_folder): raise gr.Error(f'The voice model directory {dir_name} already exists! Choose a different name for your voice model.') zip_name = zip_path.name progress(0.8, desc='[~] Extracting zip file...') extract_zip(extraction_folder, zip_name) return f'[+] The {dir_name} model was loaded successfully!' except Exception as e: raise gr.Error(str(e))