Spaces:
Running
Running
Update src/vc_infer_pipeline.py
Browse files- src/vc_infer_pipeline.py +32 -39
src/vc_infer_pipeline.py
CHANGED
@@ -1,13 +1,14 @@
|
|
|
|
1 |
import numpy as np, parselmouth, torch, pdb, sys, os
|
2 |
from time import time as ttime
|
3 |
import torch.nn.functional as F
|
4 |
import torchcrepe
|
5 |
-
from torch import Tensor
|
6 |
-
import scipy.signal as signal
|
7 |
-
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
8 |
from scipy import signal
|
9 |
-
from
|
10 |
-
import
|
|
|
|
|
|
|
11 |
|
12 |
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
13 |
now_dir = os.path.join(BASE_DIR, 'src')
|
@@ -36,19 +37,20 @@ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
|
36 |
|
37 |
|
38 |
def change_rms(data1, sr1, data2, sr2, rate):
|
39 |
-
rms1 = librosa.feature.rms(
|
40 |
-
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
41 |
-
)
|
42 |
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
|
|
43 |
rms1 = torch.from_numpy(rms1)
|
44 |
rms1 = F.interpolate(
|
45 |
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
46 |
).squeeze()
|
|
|
47 |
rms2 = torch.from_numpy(rms2)
|
48 |
rms2 = F.interpolate(
|
49 |
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
50 |
).squeeze()
|
51 |
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
|
|
52 |
data2 *= (
|
53 |
torch.pow(rms1, torch.tensor(1 - rate))
|
54 |
* torch.pow(rms2, torch.tensor(rate - 1))
|
@@ -78,9 +80,7 @@ class VC(object):
|
|
78 |
|
79 |
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
80 |
if torch.cuda.is_available():
|
81 |
-
return torch.device(
|
82 |
-
f"cuda:{index % torch.cuda.device_count()}"
|
83 |
-
)
|
84 |
elif torch.backends.mps.is_available():
|
85 |
return torch.device("mps")
|
86 |
return torch.device("cpu")
|
@@ -94,9 +94,7 @@ class VC(object):
|
|
94 |
hop_length=160,
|
95 |
model="full",
|
96 |
):
|
97 |
-
x = x.astype(
|
98 |
-
np.float32
|
99 |
-
)
|
100 |
x /= np.quantile(np.abs(x), 0.999)
|
101 |
torch_device = self.get_optimal_torch_device()
|
102 |
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
@@ -152,12 +150,6 @@ class VC(object):
|
|
152 |
f0 = f0[0].cpu().numpy()
|
153 |
return f0
|
154 |
|
155 |
-
def get_f0_pyin_computation(self, x, f0_min, f0_max):
|
156 |
-
y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
|
157 |
-
f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
|
158 |
-
f0 = f0[1:]
|
159 |
-
return f0
|
160 |
-
|
161 |
def get_f0_hybrid_computation(
|
162 |
self,
|
163 |
methods_str,
|
@@ -180,8 +172,9 @@ class VC(object):
|
|
180 |
for method in methods:
|
181 |
f0 = None
|
182 |
if method == "crepe":
|
183 |
-
f0 = self.
|
184 |
-
|
|
|
185 |
elif method == "mangio-crepe":
|
186 |
f0 = self.get_f0_crepe_computation(
|
187 |
x, f0_min, f0_max, p_len, crepe_hop_length
|
@@ -228,11 +221,13 @@ class VC(object):
|
|
228 |
filter_radius,
|
229 |
crepe_hop_length,
|
230 |
inp_f0=None,
|
|
|
|
|
231 |
):
|
232 |
global input_audio_path2wav
|
233 |
time_step = self.window / self.sr * 1000
|
234 |
-
f0_min = 50
|
235 |
-
f0_max = 1100
|
236 |
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
237 |
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
238 |
if f0_method == "pm":
|
@@ -248,9 +243,7 @@ class VC(object):
|
|
248 |
)
|
249 |
pad_size = (p_len - len(f0) + 1) // 2
|
250 |
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
251 |
-
f0 = np.pad(
|
252 |
-
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
253 |
-
)
|
254 |
|
255 |
elif f0_method == "harvest":
|
256 |
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
@@ -268,10 +261,10 @@ class VC(object):
|
|
268 |
)
|
269 |
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
270 |
f0 = signal.medfilt(f0, 3)
|
271 |
-
|
272 |
-
elif f0_method == "crepe":
|
273 |
-
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
|
274 |
|
|
|
|
|
|
|
275 |
elif f0_method == "mangio-crepe":
|
276 |
f0 = self.get_f0_crepe_computation(x, f0_min, f0_max, p_len, crepe_hop_length)
|
277 |
|
@@ -476,17 +469,15 @@ class VC(object):
|
|
476 |
protect,
|
477 |
crepe_hop_length,
|
478 |
f0_file=None,
|
|
|
|
|
479 |
):
|
480 |
-
if (
|
481 |
-
file_index != ""
|
482 |
-
and os.path.exists(file_index) == True
|
483 |
-
and index_rate != 0
|
484 |
-
):
|
485 |
try:
|
486 |
index = faiss.read_index(file_index)
|
487 |
big_npy = index.reconstruct_n(0, index.ntotal)
|
488 |
-
except:
|
489 |
-
|
490 |
index = big_npy = None
|
491 |
else:
|
492 |
index = big_npy = None
|
@@ -521,8 +512,8 @@ class VC(object):
|
|
521 |
for line in lines:
|
522 |
inp_f0.append([float(i) for i in line.split(",")])
|
523 |
inp_f0 = np.array(inp_f0, dtype="float32")
|
524 |
-
except:
|
525 |
-
|
526 |
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
527 |
pitch, pitchf = None, None
|
528 |
if if_f0 == 1:
|
@@ -535,6 +526,8 @@ class VC(object):
|
|
535 |
filter_radius,
|
536 |
crepe_hop_length,
|
537 |
inp_f0,
|
|
|
|
|
538 |
)
|
539 |
pitch = pitch[:p_len]
|
540 |
pitchf = pitchf[:p_len]
|
|
|
1 |
+
from functools import lru_cache
|
2 |
import numpy as np, parselmouth, torch, pdb, sys, os
|
3 |
from time import time as ttime
|
4 |
import torch.nn.functional as F
|
5 |
import torchcrepe
|
|
|
|
|
|
|
6 |
from scipy import signal
|
7 |
+
from torch import Tensor
|
8 |
+
import pyworld, os, faiss, librosa, torchcrepe
|
9 |
+
import random
|
10 |
+
import gc
|
11 |
+
import re
|
12 |
|
13 |
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
14 |
now_dir = os.path.join(BASE_DIR, 'src')
|
|
|
37 |
|
38 |
|
39 |
def change_rms(data1, sr1, data2, sr2, rate):
|
40 |
+
rms1 = librosa.feature.rms(y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2)
|
|
|
|
|
41 |
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
42 |
+
|
43 |
rms1 = torch.from_numpy(rms1)
|
44 |
rms1 = F.interpolate(
|
45 |
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
46 |
).squeeze()
|
47 |
+
|
48 |
rms2 = torch.from_numpy(rms2)
|
49 |
rms2 = F.interpolate(
|
50 |
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
51 |
).squeeze()
|
52 |
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
53 |
+
|
54 |
data2 *= (
|
55 |
torch.pow(rms1, torch.tensor(1 - rate))
|
56 |
* torch.pow(rms2, torch.tensor(rate - 1))
|
|
|
80 |
|
81 |
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
82 |
if torch.cuda.is_available():
|
83 |
+
return torch.device(f"cuda:{index % torch.cuda.device_count()}")
|
|
|
|
|
84 |
elif torch.backends.mps.is_available():
|
85 |
return torch.device("mps")
|
86 |
return torch.device("cpu")
|
|
|
94 |
hop_length=160,
|
95 |
model="full",
|
96 |
):
|
97 |
+
x = x.astype(np.float32)
|
|
|
|
|
98 |
x /= np.quantile(np.abs(x), 0.999)
|
99 |
torch_device = self.get_optimal_torch_device()
|
100 |
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
|
|
150 |
f0 = f0[0].cpu().numpy()
|
151 |
return f0
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
def get_f0_hybrid_computation(
|
154 |
self,
|
155 |
methods_str,
|
|
|
172 |
for method in methods:
|
173 |
f0 = None
|
174 |
if method == "crepe":
|
175 |
+
f0 = self.get_f0_crepe_computation(
|
176 |
+
x, f0_min, f0_max, p_len
|
177 |
+
)
|
178 |
elif method == "mangio-crepe":
|
179 |
f0 = self.get_f0_crepe_computation(
|
180 |
x, f0_min, f0_max, p_len, crepe_hop_length
|
|
|
221 |
filter_radius,
|
222 |
crepe_hop_length,
|
223 |
inp_f0=None,
|
224 |
+
f0_min=50,
|
225 |
+
f0_max=1100,
|
226 |
):
|
227 |
global input_audio_path2wav
|
228 |
time_step = self.window / self.sr * 1000
|
229 |
+
#f0_min = 50
|
230 |
+
#f0_max = 1100
|
231 |
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
232 |
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
233 |
if f0_method == "pm":
|
|
|
243 |
)
|
244 |
pad_size = (p_len - len(f0) + 1) // 2
|
245 |
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
246 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
|
|
|
|
247 |
|
248 |
elif f0_method == "harvest":
|
249 |
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
|
|
261 |
)
|
262 |
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
263 |
f0 = signal.medfilt(f0, 3)
|
|
|
|
|
|
|
264 |
|
265 |
+
elif f0_method == "crepe":
|
266 |
+
f0 = self.get_f0_crepe_computation(x, f0_min, f0_max, p_len)
|
267 |
+
|
268 |
elif f0_method == "mangio-crepe":
|
269 |
f0 = self.get_f0_crepe_computation(x, f0_min, f0_max, p_len, crepe_hop_length)
|
270 |
|
|
|
469 |
protect,
|
470 |
crepe_hop_length,
|
471 |
f0_file=None,
|
472 |
+
f0_min=50,
|
473 |
+
f0_max=1100,
|
474 |
):
|
475 |
+
if file_index != "" and os.path.exists(file_index) == True and index_rate != 0:
|
|
|
|
|
|
|
|
|
476 |
try:
|
477 |
index = faiss.read_index(file_index)
|
478 |
big_npy = index.reconstruct_n(0, index.ntotal)
|
479 |
+
except Exception as error:
|
480 |
+
print(error)
|
481 |
index = big_npy = None
|
482 |
else:
|
483 |
index = big_npy = None
|
|
|
512 |
for line in lines:
|
513 |
inp_f0.append([float(i) for i in line.split(",")])
|
514 |
inp_f0 = np.array(inp_f0, dtype="float32")
|
515 |
+
except Exception as error:
|
516 |
+
print(error)
|
517 |
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
518 |
pitch, pitchf = None, None
|
519 |
if if_f0 == 1:
|
|
|
526 |
filter_radius,
|
527 |
crepe_hop_length,
|
528 |
inp_f0,
|
529 |
+
f0_min,
|
530 |
+
f0_max,
|
531 |
)
|
532 |
pitch = pitch[:p_len]
|
533 |
pitchf = pitchf[:p_len]
|