Spaces:
Running
Running
Update src/vc_infer_pipeline.py
Browse files- src/vc_infer_pipeline.py +26 -15
src/vc_infer_pipeline.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
-
from functools import lru_cache
|
2 |
import numpy as np, parselmouth, torch, pdb, sys, os
|
3 |
from time import time as ttime
|
4 |
import torch.nn.functional as F
|
5 |
import torchcrepe
|
6 |
-
from scipy import signal
|
7 |
from torch import Tensor
|
8 |
-
import
|
9 |
-
import
|
10 |
-
import
|
11 |
-
import
|
12 |
|
13 |
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
14 |
now_dir = os.path.join(BASE_DIR, 'src')
|
@@ -37,14 +35,23 @@ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
|
37 |
|
38 |
|
39 |
def change_rms(data1, sr1, data2, sr2, rate):
|
40 |
-
rms1 = librosa.feature.rms(
|
|
|
|
|
41 |
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
42 |
rms1 = torch.from_numpy(rms1)
|
43 |
-
rms1 = F.interpolate(
|
|
|
|
|
44 |
rms2 = torch.from_numpy(rms2)
|
45 |
-
rms2 = F.interpolate(
|
|
|
|
|
46 |
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
47 |
-
data2 *= (
|
|
|
|
|
|
|
48 |
return data2
|
49 |
|
50 |
|
@@ -454,12 +461,16 @@ class VC(object):
|
|
454 |
crepe_hop_length,
|
455 |
f0_file=None,
|
456 |
):
|
457 |
-
if
|
|
|
|
|
|
|
|
|
458 |
try:
|
459 |
index = faiss.read_index(file_index)
|
460 |
big_npy = index.reconstruct_n(0, index.ntotal)
|
461 |
-
except
|
462 |
-
|
463 |
index = big_npy = None
|
464 |
else:
|
465 |
index = big_npy = None
|
@@ -494,8 +505,8 @@ class VC(object):
|
|
494 |
for line in lines:
|
495 |
inp_f0.append([float(i) for i in line.split(",")])
|
496 |
inp_f0 = np.array(inp_f0, dtype="float32")
|
497 |
-
except
|
498 |
-
|
499 |
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
500 |
pitch, pitchf = None, None
|
501 |
if if_f0 == 1:
|
|
|
|
|
1 |
import numpy as np, parselmouth, torch, pdb, sys, os
|
2 |
from time import time as ttime
|
3 |
import torch.nn.functional as F
|
4 |
import torchcrepe
|
|
|
5 |
from torch import Tensor
|
6 |
+
import scipy.signal as signal
|
7 |
+
import pyworld, os, traceback, faiss, librosa, torchcrepe
|
8 |
+
from scipy import signal
|
9 |
+
from functools import lru_cache
|
10 |
|
11 |
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
12 |
now_dir = os.path.join(BASE_DIR, 'src')
|
|
|
35 |
|
36 |
|
37 |
def change_rms(data1, sr1, data2, sr2, rate):
|
38 |
+
rms1 = librosa.feature.rms(
|
39 |
+
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
40 |
+
)
|
41 |
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
42 |
rms1 = torch.from_numpy(rms1)
|
43 |
+
rms1 = F.interpolate(
|
44 |
+
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
45 |
+
).squeeze()
|
46 |
rms2 = torch.from_numpy(rms2)
|
47 |
+
rms2 = F.interpolate(
|
48 |
+
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
49 |
+
).squeeze()
|
50 |
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
51 |
+
data2 *= (
|
52 |
+
torch.pow(rms1, torch.tensor(1 - rate))
|
53 |
+
* torch.pow(rms2, torch.tensor(rate - 1))
|
54 |
+
).numpy()
|
55 |
return data2
|
56 |
|
57 |
|
|
|
461 |
crepe_hop_length,
|
462 |
f0_file=None,
|
463 |
):
|
464 |
+
if (
|
465 |
+
file_index != ""
|
466 |
+
and os.path.exists(file_index) == True
|
467 |
+
and index_rate != 0
|
468 |
+
):
|
469 |
try:
|
470 |
index = faiss.read_index(file_index)
|
471 |
big_npy = index.reconstruct_n(0, index.ntotal)
|
472 |
+
except:
|
473 |
+
traceback.print_exc()
|
474 |
index = big_npy = None
|
475 |
else:
|
476 |
index = big_npy = None
|
|
|
505 |
for line in lines:
|
506 |
inp_f0.append([float(i) for i in line.split(",")])
|
507 |
inp_f0 = np.array(inp_f0, dtype="float32")
|
508 |
+
except:
|
509 |
+
traceback.print_exc()
|
510 |
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
511 |
pitch, pitchf = None, None
|
512 |
if if_f0 == 1:
|