Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from sklearn.preprocessing import LabelEncoder, MinMaxScaler
|
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
from keras.models import Sequential
|
7 |
from keras.layers import Dense, Dropout
|
|
|
8 |
|
9 |
data = pd.read_csv('cars_raw.csv')
|
10 |
|
@@ -28,7 +29,6 @@ for col in data.select_dtypes(include=['category', 'object']).columns:
|
|
28 |
for col in data.select_dtypes(include=['number']).columns:
|
29 |
data[col] = scaler.fit_transform(data[col].values.reshape(-1, 1))
|
30 |
|
31 |
-
# Удаление ненужных колонок
|
32 |
data = data.drop(columns=["Mileage", "SellerType", "VIN", "Stock#", "Drivetrain", "SellerName", "ConsumerReviews", "ExteriorStylingRating", "State", "Zipcode", "DealType"])
|
33 |
data_df = pd.DataFrame(data)
|
34 |
|
@@ -46,12 +46,9 @@ model.add(Dense(1))
|
|
46 |
model.compile(optimizer='adam', loss='mean_squared_error')
|
47 |
model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y_test))
|
48 |
|
49 |
-
# Оценка модели
|
50 |
test_loss = model.evaluate(X_test, y_test)
|
51 |
print(f'Test loss (MSE): {test_loss}')
|
52 |
|
53 |
-
import gradio as gr
|
54 |
-
|
55 |
def predict_car_price(Year, Make, Model, FuelType, Engine):
|
56 |
car_data = {
|
57 |
"Year": int(Year),
|
@@ -62,30 +59,21 @@ def predict_car_price(Year, Make, Model, FuelType, Engine):
|
|
62 |
}
|
63 |
|
64 |
car_data_df = pd.DataFrame([car_data])
|
65 |
-
|
66 |
-
result_data_df = pd.DataFrame(result_data)
|
67 |
-
|
68 |
-
needs_df = result_data_df.drop(columns=["Mileage", "SellerType", "VIN", "Stock#", "Drivetrain", "SellerName", "ConsumerReviews", "ExteriorStylingRating", "State", "Zipcode", "DealType", "Used/New", "Price", "ConsumerRating", "SellerRating", "SellerReviews", "StreetName", "ComfortRating", "PerformanceRating", "ValueForMoneyRating", "ReliabilityRating", "ExteriorColor", "InteriorColor", "MinMPG", "MaxMPG", "Transmission", "InteriorDesignRating"])
|
69 |
needs_df = pd.concat([needs_df, car_data_df], ignore_index=True)
|
70 |
|
71 |
-
le = LabelEncoder()
|
72 |
for col in needs_df.select_dtypes(include=['category', 'object']).columns:
|
73 |
needs_df[col] = le.fit_transform(needs_df[col])
|
74 |
|
75 |
-
scaler = MinMaxScaler()
|
76 |
for col in needs_df.select_dtypes(include=['number']).columns:
|
77 |
-
needs_df[col] = scaler.
|
78 |
-
|
79 |
-
result_df = needs_df.loc[[0]]
|
80 |
|
|
|
81 |
prediction = model.predict(result_df)
|
82 |
-
|
83 |
-
inverted_prediction = scaler.inverse_transform(
|
84 |
-
prediction.reshape(-1, 1)
|
85 |
-
)
|
86 |
predicted_price = inverted_prediction[0][0]
|
87 |
|
88 |
-
return predicted_price
|
89 |
|
90 |
iface = gr.Interface(
|
91 |
fn=predict_car_price,
|
|
|
5 |
from sklearn.model_selection import train_test_split
|
6 |
from keras.models import Sequential
|
7 |
from keras.layers import Dense, Dropout
|
8 |
+
import gradio as gr
|
9 |
|
10 |
data = pd.read_csv('cars_raw.csv')
|
11 |
|
|
|
29 |
for col in data.select_dtypes(include=['number']).columns:
|
30 |
data[col] = scaler.fit_transform(data[col].values.reshape(-1, 1))
|
31 |
|
|
|
32 |
data = data.drop(columns=["Mileage", "SellerType", "VIN", "Stock#", "Drivetrain", "SellerName", "ConsumerReviews", "ExteriorStylingRating", "State", "Zipcode", "DealType"])
|
33 |
data_df = pd.DataFrame(data)
|
34 |
|
|
|
46 |
model.compile(optimizer='adam', loss='mean_squared_error')
|
47 |
model.fit(X_train, y_train, epochs=100, batch_size=32, validation_data=(X_test, y_test))
|
48 |
|
|
|
49 |
test_loss = model.evaluate(X_test, y_test)
|
50 |
print(f'Test loss (MSE): {test_loss}')
|
51 |
|
|
|
|
|
52 |
def predict_car_price(Year, Make, Model, FuelType, Engine):
|
53 |
car_data = {
|
54 |
"Year": int(Year),
|
|
|
59 |
}
|
60 |
|
61 |
car_data_df = pd.DataFrame([car_data])
|
62 |
+
needs_df = data.drop(columns=["Price"]).copy()
|
|
|
|
|
|
|
63 |
needs_df = pd.concat([needs_df, car_data_df], ignore_index=True)
|
64 |
|
|
|
65 |
for col in needs_df.select_dtypes(include=['category', 'object']).columns:
|
66 |
needs_df[col] = le.fit_transform(needs_df[col])
|
67 |
|
|
|
68 |
for col in needs_df.select_dtypes(include=['number']).columns:
|
69 |
+
needs_df[col] = scaler.transform(needs_df[col].values.reshape(-1, 1))
|
|
|
|
|
70 |
|
71 |
+
result_df = needs_df.iloc[-1].values.reshape(1, -1)
|
72 |
prediction = model.predict(result_df)
|
73 |
+
inverted_prediction = scaler.inverse_transform(prediction.reshape(-1, 1))
|
|
|
|
|
|
|
74 |
predicted_price = inverted_prediction[0][0]
|
75 |
|
76 |
+
return round(predicted_price, 2)
|
77 |
|
78 |
iface = gr.Interface(
|
79 |
fn=predict_car_price,
|