import os import torch import urllib from PIL import Image import streamlit as st from pathlib import Path def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''): # Check file(s) for acceptable suffix if file and suffix: if isinstance(suffix, str): suffix = [suffix] for f in file if isinstance(file, (list, tuple)) else [file]: s = Path(f).suffix.lower() # file suffix if len(s): assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}" def check_file(file, suffix=''): # Search/download file (if necessary) and return path check_suffix(file, suffix) # optional file = str(file) # convert to str() if os.path.isfile(file) or not file: # exists return file elif file.startswith(('http:/', 'https:/')): # download url = file # warning: Pathlib turns :// -> :/ # '%2F' to '/', split https://url.com/file.txt?auth file = Path(urllib.parse.unquote(file).split('?')[0]).name if os.path.isfile(file): print(f'Found {url} locally at {file}') # file already exists else: print(f'Downloading {url} to {file}...') torch.hub.download_url_to_file(url, file) assert Path(file).exists() and Path(file).stat( ).st_size > 0, f'File download failed: {url}' # check return file st.title("Hololive Waifu Classification") image = st.text_input('Image URL', '') st.info( 'Images for quick tesing:\n \n \n' ' - https://i.imgur.com/tFZwWYw.jpg' '\n \n \n' ' - https://static.wikia.nocookie.net/omniversal-battlefield/images/b/bd/Council.jpg') pretrained = st.selectbox('Select pre-trained', ('best.pt', 'last.pt')) imgsz = st.number_input(label='Image Size', min_value=None, max_value=None, value=1280, step=1) conf = st.slider(label='Confidence threshold', min_value=0.0, max_value=1.0, value=0.25, step=0.01) iou = st.slider(label='IoU threshold', min_value=0.0, max_value=1.0, value=0.45, step=0.01) multi_label = st.selectbox('Multiple labels per box', (False, True)) agnostic = st.selectbox('Class-agnostic', (False, True)) amp = st.selectbox('Automatic Mixed Precision inference', (False, True)) max_det = st.number_input(label='Maximum number of detections per image', min_value=None, max_value=None, value=1000, step=1) if st.button('Excute'): with st.spinner('Loading the image...'): image = check_file(image) input_image = Image.open(image) with st.spinner('Loading the model...'): model = torch.hub.load('ultralytics/yolov5', 'custom', path=pretrained) with st.spinner('Updating configuration...'): model.conf = float(conf) model.max_det = int(max_det) model.iou = float(iou) model.agnostic = agnostic model.multi_label = multi_label model.amp = amp with st.spinner('Predicting...'): results = model(input_image, size=int(imgsz)) for img in results.render(): st.image(img) st.write(results.pandas().xyxy[0])