import streamlit as st #Web App from PIL import Image #Image Processing import numpy as np #Image Processing import torch #title st.title("Hololive Waifu Classification") image = st.text_input('Image URL', '') # st.write('URL: ', title) #image uploader # image = st.file_uploader(label = "Upload your image here",type=['png','jpg','jpeg']) def check_file(file, suffix=''): # Search/download file (if necessary) and return path check_suffix(file, suffix) # optional file = str(file) # convert to str() if os.path.isfile(file) or not file: # exists return file elif file.startswith(('http:/', 'https:/')): # download url = file # warning: Pathlib turns :// -> :/ file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth if os.path.isfile(file): print(f'Found {url} locally at {file}') # file already exists else: print(f'Downloading {url} to {file}...') torch.hub.download_url_to_file(url, file) assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check return file elif file.startswith('clearml://'): # ClearML Dataset ID assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'." return file else: # search files = [] for d in 'data', 'models', 'utils': # search directories files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file assert len(files), f'File not found: {file}' # assert file was found assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique return files[0] @st.cache def load_model(): model = torch.hub.load('ultralytics/yolov5', 'yolov5x6', path='best.pt') # local model # model = load_model() #load model if image != '': image = check_file(image) st.write('File: ', image) input_image = Image.open(image) #read image st.image(input_image) #display image #with st.spinner("🤖 AI is at Work! "): #result = reader.readtext(np.array(input_image)) #result_text = [] #empty list for results #for text in result: #result_text.append(text[1]) #st.write(result_text) #st.success("Here you go!") #st.balloons() #else: #st.write("Upload an Image") st.caption("authors: neko941")