Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionPipeline | |
import gradio as gr | |
import os | |
import torch | |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
pipe = pipe.to(device) | |
def generate(celebrity, setting): | |
prompt = f"A poster of {celebrity} in {setting}, 35 mm, ultra detailed, cinematic light, photorealistic" | |
return pipe(prompt, num_inference_steps=50, num_images_per_prompt=1, guidance_scale=9).images[0] | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-text2img") | |
interface = gr.Interface( | |
fn=generate, | |
title="Poster of celebrity X in setting Y", | |
inputs=[gr.Textbox(placeholder="Elon Musk"), | |
gr.Dropdown(["Mad Max", "Game of Thrones", "Pulp Fiction", "Moneyball", "The Sopranos", "Jurassic Park", "Cinderella", "The Lion King"], value="Mad Max")], | |
outputs=gr.Image(), | |
flagging_options=["great result", "satisfactory result", "needs improvement"], | |
flagging_callback=hf_writer | |
) | |
interface.launch(debug=True) | |