Spaces:
Runtime error
Runtime error
import gradio as gr | |
import base64 | |
import os | |
from anthropic import Anthropic | |
import json | |
from doc2json import process_docx | |
from settings_mgr import generate_download_settings_js, generate_upload_settings_js | |
dump_controls = False | |
log_to_console = False | |
# constants | |
image_embed_prefix = "🖼️🆙 " | |
def encode_image(image_data): | |
"""Generates a prefix for image base64 data in the required format for the | |
four known image formats: png, jpeg, gif, and webp. | |
Args: | |
image_data: The image data, encoded in base64. | |
Returns: | |
An object encoding the image | |
""" | |
# Get the first few bytes of the image data. | |
magic_number = image_data[:4] | |
# Check the magic number to determine the image type. | |
if magic_number.startswith(b'\x89PNG'): | |
image_type = 'png' | |
elif magic_number.startswith(b'\xFF\xD8'): | |
image_type = 'jpeg' | |
elif magic_number.startswith(b'GIF89a'): | |
image_type = 'gif' | |
elif magic_number.startswith(b'RIFF'): | |
if image_data[8:12] == b'WEBP': | |
image_type = 'webp' | |
else: | |
# Unknown image type. | |
raise Exception("Unknown image type") | |
else: | |
# Unknown image type. | |
raise Exception("Unknown image type") | |
return {"type": "base64", | |
"media_type": "image/" + image_type, | |
"data": base64.b64encode(image_data).decode('utf-8')} | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, gr.Textbox(value="", interactive=False) | |
def add_file(history, files): | |
for file in files: | |
if file.name.endswith(".docx"): | |
content = process_docx(file.name) | |
else: | |
with open(file.name, mode="rb") as f: | |
content = f.read() | |
if isinstance(content, bytes): | |
content = content.decode('utf-8', 'replace') | |
else: | |
content = str(content) | |
fn = os.path.basename(file.name) | |
history = history + [(f'```{fn}\n{content}\n```', None)] | |
return history | |
def add_img(history, files): | |
for file in files: | |
if log_to_console: | |
print(f"add_img {file.name}") | |
history = history + [(image_embed_prefix + file.name, None)] | |
gr.Info(f"Image added as {file.name}") | |
return history | |
def submit_text(txt_value): | |
return add_text([chatbot, txt_value], [chatbot, txt_value]) | |
def undo(history): | |
history.pop() | |
return history | |
def dump(history): | |
return str(history) | |
def load_settings(): | |
# Dummy Python function, actual loading is done in JS | |
pass | |
def save_settings(acc, sec, prompt, temp, tokens, model): | |
# Dummy Python function, actual saving is done in JS | |
pass | |
def process_values_js(): | |
return """ | |
() => { | |
return ["api_key", "system_prompt"]; | |
} | |
""" | |
def bot(message, history, api_key, system_prompt, temperature, max_tokens, model): | |
try: | |
client = Anthropic( | |
api_key=api_key | |
) | |
if log_to_console: | |
print(f"bot history: {str(history)}") | |
history_openai_format = [] | |
user_msg_parts = [] | |
for human, assi in history: | |
if human is not None: | |
if human.startswith(image_embed_prefix): | |
with open(human.lstrip(image_embed_prefix), mode="rb") as f: | |
content = f.read() | |
user_msg_parts.append({"type": "image", | |
"source": encode_image(content)}) | |
else: | |
user_msg_parts.append({"type": "text", "text": human}) | |
if assi is not None: | |
if user_msg_parts: | |
history_openai_format.append({"role": "user", "content": user_msg_parts}) | |
user_msg_parts = [] | |
history_openai_format.append({"role": "assistant", "content": assi}) | |
if message: | |
user_msg_parts.append({"type": "text", "text": human}) | |
if user_msg_parts: | |
history_openai_format.append({"role": "user", "content": user_msg_parts}) | |
if log_to_console: | |
print(f"br_prompt: {str(history_openai_format)}") | |
response = client.messages.create( | |
model=model, | |
messages= history_openai_format, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
system=system_prompt | |
) | |
if log_to_console: | |
print(f"br_response: {str(response)}") | |
resp = "" | |
for content in response.content: | |
resp += content.text | |
history[-1][1] = resp | |
if log_to_console: | |
print(f"br_result: {str(history)}") | |
except Exception as e: | |
raise gr.Error(f"Error: {str(e)}") | |
return "", history | |
def import_history(history, file): | |
with open(file.name, mode="rb") as f: | |
content = f.read() | |
if isinstance(content, bytes): | |
content = content.decode('utf-8', 'replace') | |
else: | |
content = str(content) | |
# Deserialize the JSON content | |
import_data = json.loads(content) | |
# Check if 'history' key exists for backward compatibility | |
if 'history' in import_data: | |
history = import_data['history'] | |
system_prompt.value = import_data.get('system_prompt', '') # Set default if not present | |
else: | |
# Assume it's an old format with only history data | |
history = import_data | |
return history, system_prompt.value # Return system prompt value to be set in the UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Anthropic™️ Claude™️ Chat (Nils' Version™️)") | |
with gr.Accordion("Startup"): | |
gr.Markdown("""Use of this interface permitted under the terms and conditions of the | |
[MIT license](https://github.com/ndurner/oai_chat/blob/main/LICENSE). | |
Third party terms and conditions apply, particularly | |
those of the LLM vendor (Anthropic) and hosting provider (Hugging Face).""") | |
api_key = gr.Textbox(label="Anthropic API Key", elem_id="api_key") | |
model = gr.Dropdown(label="Model", value="claude-3-opus-20240229", allow_custom_value=True, elem_id="model", | |
choices=["claude-3-opus-20240229", "claude-3-sonnet-20240229", "claude-3-haiku-20240307", "claude-2.1", "claude-2.0", "claude-instant-1.2"]) | |
system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt") | |
temp = gr.Slider(0, 1, label="Temperature", elem_id="temp", value=1) | |
max_tokens = gr.Slider(1, 4000, label="Max. Tokens", elem_id="max_tokens", value=800) | |
save_button = gr.Button("Save Settings") | |
load_button = gr.Button("Load Settings") | |
dl_settings_button = gr.Button("Download Settings") | |
ul_settings_button = gr.Button("Upload Settings") | |
load_button.click(load_settings, js=""" | |
() => { | |
let elems = ['#api_key textarea', '#system_prompt textarea', '#temp input', '#max_tokens input', '#model']; | |
elems.forEach(elem => { | |
let item = document.querySelector(elem); | |
let event = new InputEvent('input', { bubbles: true }); | |
item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || ''; | |
item.dispatchEvent(event); | |
}); | |
} | |
""") | |
save_button.click(save_settings, [api_key, system_prompt, temp, max_tokens, model], js=""" | |
(oai, sys, temp, ntok, model) => { | |
localStorage.setItem('api_key', oai); | |
localStorage.setItem('system_prompt', sys); | |
localStorage.setItem('temp', document.querySelector('#temp input').value); | |
localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value); | |
localStorage.setItem('model', model); | |
} | |
""") | |
control_ids = [('api_key', '#api_key textarea'), | |
('system_prompt', '#system_prompt textarea'), | |
('temp', '#temp input'), | |
('max_tokens', '#max_tokens input'), | |
('model', '#model')] | |
controls = [api_key, system_prompt, temp, max_tokens, model] | |
dl_settings_button.click(None, controls, js=generate_download_settings_js("claude_chat_settings.bin", control_ids)) | |
ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids)) | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
show_copy_button=True, | |
height=350 | |
) | |
with gr.Row(): | |
btn = gr.UploadButton("📁 Upload", size="sm", file_count="multiple") | |
img_btn = gr.UploadButton("🖼️ Upload", size="sm", file_count="multiple", file_types=["image"]) | |
undo_btn = gr.Button("↩️ Undo") | |
undo_btn.click(undo, inputs=[chatbot], outputs=[chatbot]) | |
clear = gr.ClearButton(chatbot, value="🗑️ Clear") | |
with gr.Row(): | |
txt = gr.TextArea( | |
scale=4, | |
show_label=False, | |
placeholder="Enter text and press enter, or upload a file", | |
container=False, | |
lines=3, | |
) | |
submit_btn = gr.Button("🚀 Send", scale=0) | |
submit_click = submit_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, [txt, chatbot, api_key, system_prompt, temp, max_tokens, model], [txt, chatbot], | |
) | |
submit_click.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
if dump_controls: | |
with gr.Row(): | |
dmp_btn = gr.Button("Dump") | |
txt_dmp = gr.Textbox("Dump") | |
dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp]) | |
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, [txt, chatbot, api_key, system_prompt, temp, max_tokens, model], [txt, chatbot], | |
) | |
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False, postprocess=False) | |
img_msg = img_btn.upload(add_img, [chatbot, img_btn], [chatbot], queue=False, postprocess=False) | |
with gr.Accordion("Import/Export", open = False): | |
import_button = gr.UploadButton("History Import") | |
export_button = gr.Button("History Export") | |
export_button.click(lambda: None, [chatbot, system_prompt], js=""" | |
(chat_history, system_prompt) => { | |
const export_data = { | |
history: chat_history, | |
system_prompt: system_prompt | |
}; | |
const history_json = JSON.stringify(export_data); | |
const blob = new Blob([history_json], {type: 'application/json'}); | |
const url = URL.createObjectURL(blob); | |
const a = document.createElement('a'); | |
a.href = url; | |
a.download = 'chat_history.json'; | |
document.body.appendChild(a); | |
a.click(); | |
document.body.removeChild(a); | |
URL.revokeObjectURL(url); | |
} | |
""") | |
dl_button = gr.Button("File download") | |
dl_button.click(lambda: None, [chatbot], js=""" | |
(chat_history) => { | |
// Attempt to extract content enclosed in backticks with an optional filename | |
const contentRegex = /```(\\S*\\.(\\S+))?\\n?([\\s\\S]*?)```/; | |
const match = contentRegex.exec(chat_history[chat_history.length - 1][1]); | |
if (match && match[3]) { | |
// Extract the content and the file extension | |
const content = match[3]; | |
const fileExtension = match[2] || 'txt'; // Default to .txt if extension is not found | |
const filename = match[1] || `download.${fileExtension}`; | |
// Create a Blob from the content | |
const blob = new Blob([content], {type: `text/${fileExtension}`}); | |
// Create a download link for the Blob | |
const url = URL.createObjectURL(blob); | |
const a = document.createElement('a'); | |
a.href = url; | |
// If the filename from the chat history doesn't have an extension, append the default | |
a.download = filename.includes('.') ? filename : `${filename}.${fileExtension}`; | |
document.body.appendChild(a); | |
a.click(); | |
document.body.removeChild(a); | |
URL.revokeObjectURL(url); | |
} else { | |
// Inform the user if the content is malformed or missing | |
alert('Sorry, the file content could not be found or is in an unrecognized format.'); | |
} | |
} | |
""") | |
import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot, system_prompt]) | |
demo.queue().launch() |