ndurner's picture
add llama 3.1 405B
2f98b46
raw
history blame
12.9 kB
import gradio as gr
import json
import io
import boto3
import base64
from PIL import Image
from settings_mgr import generate_download_settings_js, generate_upload_settings_js
from llm import LLM, log_to_console
from botocore.config import Config
dump_controls = False
def undo(history):
history.pop()
return history
def dump(history):
return str(history)
def load_settings():
# Dummy Python function, actual loading is done in JS
pass
def save_settings(acc, sec, prompt, temp):
# Dummy Python function, actual saving is done in JS
pass
def process_values_js():
return """
() => {
return ["access_key", "secret_key", "token"];
}
"""
def bot(message, history, aws_access, aws_secret, aws_token, system_prompt, temperature, max_tokens, model: str, region):
try:
llm = LLM.create_llm(model)
messages = llm.generate_body(message, history)
config = Config(
read_timeout = 600,
connect_timeout = 30,
retries = {
'max_attempts': 10,
'mode': 'adaptive'
}
)
sess = boto3.Session(
aws_access_key_id = aws_access,
aws_secret_access_key = aws_secret,
aws_session_token = aws_token,
region_name = region)
br = sess.client(service_name="bedrock-runtime", config = config)
response = br.converse_stream(
modelId = model,
messages = messages,
system = [{"text": system_prompt}],
inferenceConfig = {
"temperature": temperature,
"maxTokens": max_tokens,
}
)
response_stream = response.get('stream')
partial_response = ""
for chunk in llm.read_response(response_stream):
partial_response += chunk
yield partial_response
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
def import_history(history, file):
with open(file.name, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
content = content.decode('utf-8', 'replace')
else:
content = str(content)
# Deserialize the JSON content
import_data = json.loads(content)
# Check if 'history' key exists for backward compatibility
if 'history' in import_data:
history = import_data['history']
system_prompt_value = import_data.get('system_prompt', '') # Set default if not present
else:
# Assume it's an old format with only history data
history = import_data
system_prompt_value = ''
# Process the history to handle image data
processed_history = []
for pair in history:
processed_pair = []
for message in pair:
if isinstance(message, dict) and 'file' in message and 'data' in message['file']:
# Create a gradio.Image from the base64 data
image_data = base64.b64decode(message['file']['data'].split(',')[1])
img = Image.open(io.BytesIO(image_data))
gr_image = gr.Image(img)
processed_pair.append(gr_image)
gr.Warning("Reusing images across sessions is limited to one conversation turn")
else:
processed_pair.append(message)
processed_history.append(processed_pair)
return processed_history, system_prompt_value
def export_history(h, s):
pass
with gr.Blocks(delete_cache=(86400, 86400)) as demo:
gr.Markdown("# Amazon™️ Bedrock™️ Chat™️ (Nils' Version™️) feat. Mistral™️ AI & Anthropic™️ Claude™️")
with gr.Accordion("Startup"):
gr.Markdown("""Use of this interface permitted under the terms and conditions of the
[MIT license](https://github.com/ndurner/amz_bedrock_chat/blob/main/LICENSE).
Third party terms and conditions apply, particularly
those of the LLM vendor (AWS) and hosting provider (Hugging Face). This software and the AI models may make mistakes, so verify all outputs.""")
aws_access = gr.Textbox(label="AWS Access Key", elem_id="aws_access")
aws_secret = gr.Textbox(label="AWS Secret Key", elem_id="aws_secret")
aws_token = gr.Textbox(label="AWS Session Token", elem_id="aws_token")
model = gr.Dropdown(label="Model", value="anthropic.claude-3-5-sonnet-20240620-v1:0", allow_custom_value=True, elem_id="model",
choices=["anthropic.claude-3-5-sonnet-20240620-v1:0", "anthropic.claude-3-opus-20240229-v1:0", "meta.llama3-1-405b-instruct-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0", "anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-v2:1", "anthropic.claude-v2",
"mistral.mistral-7b-instruct-v0:2", "mistral.mixtral-8x7b-instruct-v0:1", "mistral.mistral-large-2407-v1:0"])
system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt")
region = gr.Dropdown(label="Region", value="us-west-2", allow_custom_value=True, elem_id="region",
choices=["eu-central-1", "eu-west-3", "us-east-1", "us-west-1", "us-west-2"])
temp = gr.Slider(0, 1, label="Temperature", elem_id="temp", value=1)
max_tokens = gr.Slider(1, 8192, label="Max. Tokens", elem_id="max_tokens", value=4096)
save_button = gr.Button("Save Settings")
load_button = gr.Button("Load Settings")
dl_settings_button = gr.Button("Download Settings")
ul_settings_button = gr.Button("Upload Settings")
load_button.click(load_settings, js="""
() => {
let elems = ['#aws_access textarea', '#aws_secret textarea', '#aws_token textarea', '#system_prompt textarea', '#temp input', '#max_tokens input', '#model', '#region'];
elems.forEach(elem => {
let item = document.querySelector(elem);
let event = new InputEvent('input', { bubbles: true });
item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || '';
item.dispatchEvent(event);
});
}
""")
save_button.click(save_settings, [aws_access, aws_secret, aws_token, system_prompt, temp, max_tokens, model, region], js="""
(acc, sec, tok, system_prompt, temp, ntok, model, region) => {
localStorage.setItem('aws_access', acc);
localStorage.setItem('aws_secret', sec);
localStorage.setItem('aws_token', tok);
localStorage.setItem('system_prompt', system_prompt);
localStorage.setItem('temp', document.querySelector('#temp input').value);
localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value);
localStorage.setItem('model', model);
localStorage.setItem('region', region);
}
""")
control_ids = [('aws_access', '#aws_access textarea'),
('aws_secret', '#aws_secret textarea'),
('aws_token', '#aws_token textarea'),
('system_prompt', '#system_prompt textarea'),
('temp', '#temp input'),
('max_tokens', '#max_tokens input'),
('model', '#model'),
('region', '#region')]
controls = [aws_access, aws_secret, aws_token, system_prompt, temp, max_tokens, model, region]
dl_settings_button.click(None, controls, js=generate_download_settings_js("amz_chat_settings.bin", control_ids))
ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids))
chat = gr.ChatInterface(fn=bot, multimodal=True, additional_inputs=controls, retry_btn = None, autofocus = False)
chat.textbox.file_count = "multiple"
chatbot = chat.chatbot
chatbot.show_copy_button = True
chatbot.height = 350
if dump_controls:
with gr.Row():
dmp_btn = gr.Button("Dump")
txt_dmp = gr.Textbox("Dump")
dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp])
with gr.Accordion("Import/Export", open = False):
import_button = gr.UploadButton("History Import")
export_button = gr.Button("History Export")
export_button.click(export_history, [chatbot, system_prompt], js="""
async (chat_history, system_prompt) => {
console.log('Chat History:', JSON.stringify(chat_history, null, 2));
async function fetchAndEncodeImage(url) {
const response = await fetch(url);
const blob = await response.blob();
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result);
reader.onerror = reject;
reader.readAsDataURL(blob);
});
}
const processedHistory = await Promise.all(chat_history.map(async (pair) => {
return await Promise.all(pair.map(async (message) => {
if (message && message.file && message.file.url) {
const base64Image = await fetchAndEncodeImage(message.file.url);
return {
...message,
file: {
...message.file,
data: base64Image
}
};
}
return message;
}));
}));
const export_data = {
history: processedHistory,
system_prompt: system_prompt
};
const history_json = JSON.stringify(export_data);
const blob = new Blob([history_json], {type: 'application/json'});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = 'chat_history.json';
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
}
""")
dl_button = gr.Button("File download")
dl_button.click(lambda: None, [chatbot], js="""
(chat_history) => {
// Attempt to extract content enclosed in backticks with an optional filename
const contentRegex = /```(\\S*\\.(\\S+))?\\n?([\\s\\S]*?)```/;
const match = contentRegex.exec(chat_history[chat_history.length - 1][1]);
if (match && match[3]) {
// Extract the content and the file extension
const content = match[3];
const fileExtension = match[2] || 'txt'; // Default to .txt if extension is not found
const filename = match[1] || `download.${fileExtension}`;
// Create a Blob from the content
const blob = new Blob([content], {type: `text/${fileExtension}`});
// Create a download link for the Blob
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
// If the filename from the chat history doesn't have an extension, append the default
a.download = filename.includes('.') ? filename : `${filename}.${fileExtension}`;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
} else {
// Inform the user if the content is malformed or missing
alert('Sorry, the file content could not be found or is in an unrecognized format.');
}
}
""")
import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot, system_prompt])
demo.queue().launch()