Spaces:
Running
Running
import gradio as gr | |
import json | |
import io | |
import boto3 | |
import base64 | |
from PIL import Image | |
from settings_mgr import generate_download_settings_js, generate_upload_settings_js | |
from llm import LLM, log_to_console | |
from botocore.config import Config | |
dump_controls = False | |
def undo(history): | |
history.pop() | |
return history | |
def dump(history): | |
return str(history) | |
def load_settings(): | |
# Dummy Python function, actual loading is done in JS | |
pass | |
def save_settings(acc, sec, prompt, temp): | |
# Dummy Python function, actual saving is done in JS | |
pass | |
def process_values_js(): | |
return """ | |
() => { | |
return ["access_key", "secret_key", "token"]; | |
} | |
""" | |
def bot(message, history, aws_access, aws_secret, aws_token, system_prompt, temperature, max_tokens, model: str, region): | |
try: | |
llm = LLM.create_llm(model) | |
messages = llm.generate_body(message, history) | |
config = Config( | |
read_timeout = 600, | |
connect_timeout = 30, | |
retries = { | |
'max_attempts': 10, | |
'mode': 'adaptive' | |
} | |
) | |
sess = boto3.Session( | |
aws_access_key_id = aws_access, | |
aws_secret_access_key = aws_secret, | |
aws_session_token = aws_token, | |
region_name = region) | |
br = sess.client(service_name="bedrock-runtime", config = config) | |
response = br.converse_stream( | |
modelId = model, | |
messages = messages, | |
system = [{"text": system_prompt}], | |
inferenceConfig = { | |
"temperature": temperature, | |
"maxTokens": max_tokens, | |
} | |
) | |
response_stream = response.get('stream') | |
partial_response = "" | |
for chunk in llm.read_response(response_stream): | |
partial_response += chunk | |
yield partial_response | |
except Exception as e: | |
raise gr.Error(f"Error: {str(e)}") | |
def import_history(history, file): | |
with open(file.name, mode="rb") as f: | |
content = f.read() | |
if isinstance(content, bytes): | |
content = content.decode('utf-8', 'replace') | |
else: | |
content = str(content) | |
# Deserialize the JSON content | |
import_data = json.loads(content) | |
# Check if 'history' key exists for backward compatibility | |
if 'history' in import_data: | |
history = import_data['history'] | |
system_prompt_value = import_data.get('system_prompt', '') # Set default if not present | |
else: | |
# Assume it's an old format with only history data | |
history = import_data | |
system_prompt_value = '' | |
# Process the history to handle image data | |
processed_history = [] | |
for pair in history: | |
processed_pair = [] | |
for message in pair: | |
if isinstance(message, dict) and 'file' in message and 'data' in message['file']: | |
# Create a gradio.Image from the base64 data | |
image_data = base64.b64decode(message['file']['data'].split(',')[1]) | |
img = Image.open(io.BytesIO(image_data)) | |
gr_image = gr.Image(img) | |
processed_pair.append(gr_image) | |
gr.Warning("Reusing images across sessions is limited to one conversation turn") | |
else: | |
processed_pair.append(message) | |
processed_history.append(processed_pair) | |
return processed_history, system_prompt_value | |
def export_history(h, s): | |
pass | |
with gr.Blocks(delete_cache=(86400, 86400)) as demo: | |
gr.Markdown("# Amazon™️ Bedrock™️ Chat™️ (Nils' Version™️) feat. Mistral™️ AI & Anthropic™️ Claude™️") | |
with gr.Accordion("Startup"): | |
gr.Markdown("""Use of this interface permitted under the terms and conditions of the | |
[MIT license](https://github.com/ndurner/amz_bedrock_chat/blob/main/LICENSE). | |
Third party terms and conditions apply, particularly | |
those of the LLM vendor (AWS) and hosting provider (Hugging Face). This software and the AI models may make mistakes, so verify all outputs.""") | |
aws_access = gr.Textbox(label="AWS Access Key", elem_id="aws_access") | |
aws_secret = gr.Textbox(label="AWS Secret Key", elem_id="aws_secret") | |
aws_token = gr.Textbox(label="AWS Session Token", elem_id="aws_token") | |
model = gr.Dropdown(label="Model", value="anthropic.claude-3-5-sonnet-20240620-v1:0", allow_custom_value=True, elem_id="model", | |
choices=["anthropic.claude-3-5-sonnet-20240620-v1:0", "anthropic.claude-3-opus-20240229-v1:0", "meta.llama3-1-405b-instruct-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0", "anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-v2:1", "anthropic.claude-v2", | |
"mistral.mistral-7b-instruct-v0:2", "mistral.mixtral-8x7b-instruct-v0:1", "mistral.mistral-large-2407-v1:0"]) | |
system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt") | |
region = gr.Dropdown(label="Region", value="us-west-2", allow_custom_value=True, elem_id="region", | |
choices=["eu-central-1", "eu-west-3", "us-east-1", "us-west-1", "us-west-2"]) | |
temp = gr.Slider(0, 1, label="Temperature", elem_id="temp", value=1) | |
max_tokens = gr.Slider(1, 8192, label="Max. Tokens", elem_id="max_tokens", value=4096) | |
save_button = gr.Button("Save Settings") | |
load_button = gr.Button("Load Settings") | |
dl_settings_button = gr.Button("Download Settings") | |
ul_settings_button = gr.Button("Upload Settings") | |
load_button.click(load_settings, js=""" | |
() => { | |
let elems = ['#aws_access textarea', '#aws_secret textarea', '#aws_token textarea', '#system_prompt textarea', '#temp input', '#max_tokens input', '#model', '#region']; | |
elems.forEach(elem => { | |
let item = document.querySelector(elem); | |
let event = new InputEvent('input', { bubbles: true }); | |
item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || ''; | |
item.dispatchEvent(event); | |
}); | |
} | |
""") | |
save_button.click(save_settings, [aws_access, aws_secret, aws_token, system_prompt, temp, max_tokens, model, region], js=""" | |
(acc, sec, tok, system_prompt, temp, ntok, model, region) => { | |
localStorage.setItem('aws_access', acc); | |
localStorage.setItem('aws_secret', sec); | |
localStorage.setItem('aws_token', tok); | |
localStorage.setItem('system_prompt', system_prompt); | |
localStorage.setItem('temp', document.querySelector('#temp input').value); | |
localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value); | |
localStorage.setItem('model', model); | |
localStorage.setItem('region', region); | |
} | |
""") | |
control_ids = [('aws_access', '#aws_access textarea'), | |
('aws_secret', '#aws_secret textarea'), | |
('aws_token', '#aws_token textarea'), | |
('system_prompt', '#system_prompt textarea'), | |
('temp', '#temp input'), | |
('max_tokens', '#max_tokens input'), | |
('model', '#model'), | |
('region', '#region')] | |
controls = [aws_access, aws_secret, aws_token, system_prompt, temp, max_tokens, model, region] | |
dl_settings_button.click(None, controls, js=generate_download_settings_js("amz_chat_settings.bin", control_ids)) | |
ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids)) | |
chat = gr.ChatInterface(fn=bot, multimodal=True, additional_inputs=controls, retry_btn = None, autofocus = False) | |
chat.textbox.file_count = "multiple" | |
chatbot = chat.chatbot | |
chatbot.show_copy_button = True | |
chatbot.height = 350 | |
if dump_controls: | |
with gr.Row(): | |
dmp_btn = gr.Button("Dump") | |
txt_dmp = gr.Textbox("Dump") | |
dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp]) | |
with gr.Accordion("Import/Export", open = False): | |
import_button = gr.UploadButton("History Import") | |
export_button = gr.Button("History Export") | |
export_button.click(export_history, [chatbot, system_prompt], js=""" | |
async (chat_history, system_prompt) => { | |
console.log('Chat History:', JSON.stringify(chat_history, null, 2)); | |
async function fetchAndEncodeImage(url) { | |
const response = await fetch(url); | |
const blob = await response.blob(); | |
return new Promise((resolve, reject) => { | |
const reader = new FileReader(); | |
reader.onloadend = () => resolve(reader.result); | |
reader.onerror = reject; | |
reader.readAsDataURL(blob); | |
}); | |
} | |
const processedHistory = await Promise.all(chat_history.map(async (pair) => { | |
return await Promise.all(pair.map(async (message) => { | |
if (message && message.file && message.file.url) { | |
const base64Image = await fetchAndEncodeImage(message.file.url); | |
return { | |
...message, | |
file: { | |
...message.file, | |
data: base64Image | |
} | |
}; | |
} | |
return message; | |
})); | |
})); | |
const export_data = { | |
history: processedHistory, | |
system_prompt: system_prompt | |
}; | |
const history_json = JSON.stringify(export_data); | |
const blob = new Blob([history_json], {type: 'application/json'}); | |
const url = URL.createObjectURL(blob); | |
const a = document.createElement('a'); | |
a.href = url; | |
a.download = 'chat_history.json'; | |
document.body.appendChild(a); | |
a.click(); | |
document.body.removeChild(a); | |
URL.revokeObjectURL(url); | |
} | |
""") | |
dl_button = gr.Button("File download") | |
dl_button.click(lambda: None, [chatbot], js=""" | |
(chat_history) => { | |
// Attempt to extract content enclosed in backticks with an optional filename | |
const contentRegex = /```(\\S*\\.(\\S+))?\\n?([\\s\\S]*?)```/; | |
const match = contentRegex.exec(chat_history[chat_history.length - 1][1]); | |
if (match && match[3]) { | |
// Extract the content and the file extension | |
const content = match[3]; | |
const fileExtension = match[2] || 'txt'; // Default to .txt if extension is not found | |
const filename = match[1] || `download.${fileExtension}`; | |
// Create a Blob from the content | |
const blob = new Blob([content], {type: `text/${fileExtension}`}); | |
// Create a download link for the Blob | |
const url = URL.createObjectURL(blob); | |
const a = document.createElement('a'); | |
a.href = url; | |
// If the filename from the chat history doesn't have an extension, append the default | |
a.download = filename.includes('.') ? filename : `${filename}.${fileExtension}`; | |
document.body.appendChild(a); | |
a.click(); | |
document.body.removeChild(a); | |
URL.revokeObjectURL(url); | |
} else { | |
// Inform the user if the content is malformed or missing | |
alert('Sorry, the file content could not be found or is in an unrecognized format.'); | |
} | |
} | |
""") | |
import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot, system_prompt]) | |
demo.queue().launch() |