Spaces:
Runtime error
Runtime error
File size: 48,570 Bytes
58554eb 495dc6a 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 14e037d 58554eb 6d59cac 0b69058 d206023 58554eb 7025767 58554eb 7025767 58554eb 7025767 269e4e0 58554eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
"""
Graphit
Copyright (c) 2023-present NAVER Corp.
Apache-2.0
"""
import os
import numpy as np
import base64
import requests
from io import BytesIO
import json
import time
import math
import argparse
import torch
import torch.nn.functional as F
import gradio as gr
import types
from typing import Union, List, Optional, Callable
import diffusers
import torch
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.models import AutoencoderKL
from transformers import CLIPTextModel
import datasets
from torchvision import transforms
from torchvision.transforms.functional import to_pil_image, pil_to_tensor
import PIL
from PIL import Image, ImageOps
import compodiff
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from transparent_background import Remover
from huggingface_hub import hf_hub_url, cached_download
from RealESRGAN import RealESRGAN
import einops
import cv2
from skimage import segmentation, color, graph
import random
def preprocess(image, mode):
image = np.array(image)[None, :].astype(np.float32) / 255.0
image = image
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
if mode == 'scr2i':
image[image > 0.0] = 0.0
image = torch.from_numpy(image)
return image
class GraphitPipeline(StableDiffusionInstructPix2PixPipeline):
'''
override:
/opt/conda/lib/python3.8/site-packages/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
'''
def prepare_image_latents(
self, image, mask, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
):
if not isinstance(image, (torch.Tensor, Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
mask = mask.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
image_latents = [self.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = self.vae.encode(image).latent_dist.mode()
mask = torch.nn.functional.interpolate(
mask, #.unsqueeze(0).unsqueeze(0),
size=(image_latents.shape[-2], image_latents.shape[-1]),
mode='bicubic',
align_corners=False,
)
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand image_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
#deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
mask = torch.cat([mask] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
image_latents *= 0.18215
if do_classifier_free_guidance:
uncond_image_latents = torch.zeros_like(image_latents)
image_latents = torch.cat([image_latents, image_latents], dim=0)
mask = torch.cat([mask, mask], dim=0)
image_latents = torch.cat([image_latents, mask], dim=1)
return image_latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
mask: Union[torch.FloatTensor, PIL.Image.Image] = None,
depth_map: Union[torch.FloatTensor, PIL.Image.Image] = None,
num_inference_steps: int = 100,
guidance_scale: float = 3.5,
use_depth_map_as_input: bool = False,
apply_mask_to_input: bool = True,
mode: str = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
image_cond_embeds: Optional[torch.FloatTensor] = None,
negative_image_cond_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
):
# 0. Check inputs
self.check_inputs(prompt, callback_steps)
if image is None:
raise ValueError("`image` input cannot be undefined.")
# 1. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = True#guidance_scale >= 1.0 and image_guidance_scale >= 1.0
# check if scheduler is in sigmas space
scheduler_is_in_sigma_space = hasattr(self.scheduler, "sigmas")
# 2. Encode input prompt
cond_embeds = torch.cat([image_cond_embeds, negative_image_cond_embeds])
cond_embeds = einops.repeat(cond_embeds, 'b n d -> (b num) n d', num=num_images_per_prompt).to(model_dict['torch_dtype'])
prompt_embeds = cond_embeds
# 3. Preprocess image
image = preprocess(image, mode)
if len(mask.shape) > 2:
edge_map = mask[:,:,1:]
edge_map = preprocess(edge_map, mode)
mask = mask[:,:,0]
else:
edge_map = None
mask = mask.unsqueeze(0).unsqueeze(0)
if torch.sum(mask).item() == 0.0 and use_depth_map_as_input:
image = depth_map
if edge_map is None:
if apply_mask_to_input:
image = image * (1 - mask)
else:
image = image * (1 - mask) + edge_map * mask
height, width = image.shape[-2:]
# 4. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare Image latents
image_latents = self.prepare_image_latents(
image,
mask,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
do_classifier_free_guidance,
generator,
)
if mode == 't2i':
image_latents = torch.zeros_like(image_latents)
# 6. Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Check that shapes of latents and image match the UNet channels
num_channels_image = image_latents.shape[1]
if num_channels_latents + num_channels_image != self.unet.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_image`: {num_channels_image} "
f" = {num_channels_latents+num_channels_image}. Please verify the config of"
" `pipeline.unet` or your `image` input."
)
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# Expand the latents if we are doing classifier free guidance.
# The latents are expanded 3 times because for pix2pix the guidance\
# is applied for both the text and the input image.
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# concat latents, image_latents in the channel dimension
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
# predict the noise residual
noise_pred = self.unet(scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
# Hack:
# For karras style schedulers the model does classifer free guidance using the
# predicted_original_sample instead of the noise_pred. So we need to compute the
# predicted_original_sample here if we are using a karras style scheduler.
if scheduler_is_in_sigma_space:
step_index = (self.scheduler.timesteps == t).nonzero().item()
sigma = self.scheduler.sigmas[step_index]
noise_pred = latent_model_input - sigma * noise_pred
# perform guidance
if do_classifier_free_guidance:
noise_pred_full, noise_pred_uncond = noise_pred.chunk(2)
noise_pred = (
noise_pred_uncond
+ guidance_scale * (noise_pred_full - noise_pred_uncond)
)
# Hack:
# For karras style schedulers the model does classifer free guidance using the
# predicted_original_sample instead of the noise_pred. But the scheduler.step function
# expects the noise_pred and computes the predicted_original_sample internally. So we
# need to overwrite the noise_pred here such that the value of the computed
# predicted_original_sample is correct.
if scheduler_is_in_sigma_space:
noise_pred = (noise_pred - latents) / (-sigma)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 10. Post-processing
image = self.decode_latents(latents)
# 11. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 12. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
class CustomRealESRGAN(RealESRGAN):
@torch.no_grad()
@torch.cuda.amp.autocast()
def predict(self, pil_lr_image_list):
device = self.device
# batchfy
batch_lr_images = (torch.stack([pil_to_tensor(pil_lr_image) for pil_lr_image in pil_lr_image_list]).float() / 255).to(device)
batch_outputs = self.model(batch_lr_images).clamp_(0, 1)
# to pil images
return [to_pil_image(output) for output in batch_outputs]
def build_models(args):
# Load scheduler, tokenizer and models.
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
torch_dtype = torch.float16 if 'cuda' in device else torch.float32
model_path = 'navervision/Graphit-SD'
unet = UNet2DConditionModel.from_pretrained(
model_path, torch_dtype=torch_dtype,
)
vae_name = 'stabilityai/sd-vae-ft-ema'
vae = AutoencoderKL.from_pretrained(vae_name, torch_dtype=torch_dtype)
model_name = 'timbrooks/instruct-pix2pix'
pipe = GraphitPipeline.from_pretrained(model_name, torch_dtype=torch_dtype, safety_checker=None,
unet = unet,
vae = vae,
)
pipe = pipe.to(device)
## load CompoDiff
compodiff_model, clip_model, clip_preprocess, clip_tokenizer = compodiff.build_model()
compodiff_model, clip_model = compodiff_model.to(device), clip_model.to(device)
if device != 'cpu':
clip_model = clip_model.half()
## load third-party models
model_name = 'Intel/dpt-large'
depth_preprocess = DPTFeatureExtractor.from_pretrained(model_name)
depth_predictor = DPTForDepthEstimation.from_pretrained(model_name, torch_dtype=torch_dtype)
depth_predictor = depth_predictor.to(device)
if not os.path.exists('./third_party/remover_fast.pth'):
model_file_url = hf_hub_url(repo_id='Geonmo/remover_fast', filename='remover_fast.pth')
cached_download(model_file_url, cache_dir='./third_party', force_filename='remover_fast.pth')
remover = Remover(fast=True, jit=False, device=device, ckpt='./third_party/remover_fast.pth')
sr_model = CustomRealESRGAN(device, scale=2)
sr_model.load_weights('./third_party/RealESRGAN_x2.pth', download=True)
dataset = datasets.load_dataset("FredZhang7/stable-diffusion-prompts-2.47M")
train = dataset["train"]
prompts = train["text"]
model_dict = {'pipe': pipe,
'compodiff': compodiff_model,
'clip_preprocess': clip_preprocess,
'clip_tokenizer': clip_tokenizer,
'clip_model': clip_model,
'depth_preprocess': depth_preprocess,
'depth_predictor': depth_predictor,
'remover': remover,
'sr_model': sr_model,
'prompt_candidates': prompts,
'device': device,
'torch_dtype': torch_dtype,
}
return model_dict
def predict_compodiff(image, text_input, negative_text, cfg_image_scale, cfg_text_scale, mask, random_seed):
device = model_dict['device']
text_token_dict = model_dict['clip_tokenizer'](text=text_input, return_tensors='pt', padding='max_length', truncation=True)
text_tokens, text_attention_mask = text_token_dict['input_ids'].to(device), text_token_dict['attention_mask'].to(device)
negative_text_token_dict = model_dict['clip_tokenizer'](text=negative_text, return_tensors='pt', padding='max_length', truncation=True)
negative_text_tokens, negative_text_attention_mask = negative_text_token_dict['input_ids'].to(device), text_token_dict['attention_mask'].to(device)
with torch.no_grad():
if image is None:
image_cond = torch.zeros([1,1,768]).to(device)
mask = torch.tensor(np.zeros([64, 64], dtype='float32')).to(device).unsqueeze(0)
else:
image_source = image.resize((512, 512))
image_source = model_dict['clip_preprocess'](image_source, return_tensors='pt')['pixel_values'].to(device)
mask = mask.resize((512, 512))
mask = model_dict['clip_preprocess'](mask, do_normalize=False, return_tensors='pt')['pixel_values']
mask = mask[:,:1,:,:]
mask = (mask > 0.5).float().to(device)
image_source = image_source * (1 - mask)
image_cond = model_dict['clip_model'].encode_images(image_source)
mask = transforms.Resize([64, 64])(mask)[:,0,:,:]
mask = (mask > 0.5).float()
text_cond = model_dict['clip_model'].encode_texts(text_tokens, text_attention_mask)
negative_text_cond = model_dict['clip_model'].encode_texts(negative_text_tokens, negative_text_attention_mask)
sampled_image_features = model_dict['compodiff'].sample(image_cond, text_cond, negative_text_cond, mask, timesteps=25, cond_scale=(1.0 if image is None else 1.3, cfg_text_scale), num_samples_per_batch=4, random_seed=random_seed).unsqueeze(1)
return sampled_image_features, image_cond
def generate_depth_map(image, height, width):
device = model_dict['device']
torch_dtype = model_dict['torch_dtype']
depth_inputs = {k: v.to(device, dtype=torch_dtype) for k, v in model_dict['depth_preprocess'](images=image, return_tensors='pt').items()}
depth_map = model_dict['depth_predictor'](**depth_inputs).predicted_depth.unsqueeze(1)
depth_min = torch.amin(depth_map, dim=[1,2,3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1,2,3], keepdim=True)
depth_map = 2.0 * ((depth_map - depth_min) / (depth_max - depth_min)) - 1.0
depth_map = torch.nn.functional.interpolate(
depth_map,
size=(height, width),
mode='bicubic',
align_corners=False,
)
return depth_map
def generate_color(image, compactness=30, n_segments=100, thresh=35, blur_kernel=3, blur_std=0):
img = image # 0 ~ 255 uint8
labels = segmentation.slic(img, compactness=compactness, n_segments=n_segments)#, start_label=1)
g = graph.rag_mean_color(img, labels)
labels2 = graph.cut_threshold(labels, g, thresh=thresh)
out = color.label2rgb(labels2, img, kind='avg', bg_label=-1)
return out
@torch.no_grad()
def generate(image_source, image_reference, text_input, negative_prompt, steps, random_seed, cfg_image_scale, cfg_text_scale, cfg_image_space_scale, cfg_image_reference_mix_weight, cfg_image_source_mix_weight, mask_scale, use_edge, t2i_height, t2i_width, do_sr, mode):
device = model_dict['device']
torch_dtype = model_dict['torch_dtype']
text_input = text_input.lower()
if negative_prompt == '':
print('running without a negative prompt')
# prepare an input image
use_mask = False
mask = None
is_null_image_source = False
if type(image_source) == dict:
image_source, mask = image_source['image'], image_source['mask']
elif image_source is None:
image_source = Image.fromarray(np.zeros([t2i_height, t2i_width, 3]).astype('uint8'))
is_null_image_source = True
try:
image_source = ImageOps.exif_transpose(image_source)
except:
pass
width, height = image_source.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
image_source = org_image_source = ImageOps.fit(image_source, (width, height), method=Image.Resampling.LANCZOS)
if mask is not None:
mask_pil = mask = ImageOps.fit(mask, (width, height), method=Image.Resampling.LANCZOS)
mask = ((torch.tensor(np.array(mask.convert('L'))).float() / 255.0) > 0.5).float()
if torch.sum(mask).item() > 0.0:
print('now using mask')
use_mask = True
else:
mask = torch.zeros([height, width])
mask_pil = to_pil_image(mask)
use_depth_map_as_input = False
if mode == 's2i' or mode == 'scr2i': # sketch to image
image_source = mask
image_source = einops.repeat(image_source, 'h w -> r h w', r=3)
mask = image_source[0,:,:]
image_source = org_image_source = to_pil_image(image_source)
mask_pil = to_pil_image(mask)
mask *= mask_scale
use_mask = False
elif mode == 'cs2i':
mask = torch.tensor((np.array(image_source)[:,:,0] != 255)).float() * mask_scale
mask_pil = Image.fromarray(((np.array(image_source)[:,:,0] != 255) * 255).astype('uint8'))
use_mask = False #True
elif mode == 'd2i': # depth to image
use_depth_map_as_input = True
elif mode == 'e2i': # edge to image
image_source = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3)
image_source = Image.fromarray(image_source) #to_pil_image(image_source)
org_image_source = image_source
elif mode == 'inped':
# mask = torch.Size([512, 512])
mask_np = (einops.repeat(mask.numpy(), 'h w -> h w r', r=1) * 255).astype('uint8')
gray = mask_np #cv2.cvtColor(mask_np, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])
cv2.rectangle(mask_np, (x, y), (x+w, y+h), 255, -1)
mask_np = mask_np.astype('float32') / 255
if image_reference is not None:
edge_reference = image_reference.resize((w, h))
color_map = generate_color(np.array(edge_reference)).astype('float32')
reference_map = (model_dict['remover'].process(edge_reference, type='map') > 16).astype('float32')
edge_reference = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(edge_reference)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32')
edge_np = np.zeros_like(np.array(image_source)).astype('float32')
if text_input != '':
edge_np[y:y+h,x:x+w] = edge_reference * reference_map
elif use_edge and mask_scale > 0.0:
print('mode: color inped with with_edge')
edge_np[y:y+h,x:x+w] = (255 - edge_reference) / 255 * color_map * reference_map + (1 - mask_scale) * edge_reference / 255 * reference_map
else:
print('mode: color inped with no_edge')
edge_np[y:y+h,x:x+w] = color_map * reference_map
mask_np = np.zeros_like(np.array(image_source)).astype('float32')
mask_np[y:y+h,x:x+w] = reference_map #edge_reference
mask_np = mask_np[:,:,:1]
else:
edge_np = einops.repeat(cv2.Canny(cv2.cvtColor(np.array(image_source)[:,:,::-1], cv2.COLOR_BGR2GRAY), threshold1=100, threshold2=200), 'h w -> h w r', r=3).astype('float32')
# concat edge to mask_np
mask = torch.tensor(np.concatenate([mask_np, edge_np], axis=-1))
mask_pil = to_pil_image(mask_np[:,:,0].astype('uint8') * 255)
#mask_pil = to_pil_image((mask_np[:,:,0] * 255).astype('uint8'))
with torch.no_grad():
# do reference first
if image_reference is not None:
image_cond_reference = ImageOps.exif_transpose(image_reference)
image_cond_reference = model_dict['clip_preprocess'](image_cond_reference, return_tensors='pt')['pixel_values'].to(device)
image_cond_reference = model_dict['clip_model'].encode_images(image_cond_reference)
else:
image_cond_reference = torch.zeros([1, 1, 768]).to(torch_dtype).to(device)
# do source or knn
image_cond_source = None
if text_input != '':
if mode in ['t2i', 'd2i', 'e2i', 's2i', 'scr2i', 'cs2i']:
if mode == 'cs2i':
image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
image_cond_color_compensation, _ = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
image_cond = 0.9 * image_cond + 0.1 * image_cond_color_compensation
else:
image_cond, image_cond_source = predict_compodiff(None, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
else:
image_cond, image_cond_source = predict_compodiff(image_source, text_input, negative_prompt, cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
image_cond = image_cond.to(torch_dtype).to(device)
image_cond_source = image_cond_source.to(torch_dtype).to(device)
else:
image_cond = torch.zeros([1, 1, 768]).to(torch_dtype).to(device)
if image_cond_source is None and mode != 't2i':
image_cond_source = image_source.resize((512, 512))
image_cond_source = model_dict['clip_preprocess'](image_cond_source, return_tensors='pt')['pixel_values'].to(device)
image_cond_source = model_dict['clip_model'].encode_images(image_cond_source)
if cfg_image_reference_mix_weight > 0.0 and torch.sum(image_cond_reference).item() != 0.0:
if torch.sum(image_cond).item() == 0.0:
image_cond = image_cond_reference
else:
image_cond = (1.0 - cfg_image_reference_mix_weight) * image_cond + cfg_image_reference_mix_weight * image_cond_reference
if cfg_image_source_mix_weight > 0.0:
image_cond = (1.0 - cfg_image_source_mix_weight) * image_cond + cfg_image_source_mix_weight * image_cond_source
if negative_prompt != '':
negative_image_cond, _ = predict_compodiff(None, negative_prompt, '', cfg_image_scale, cfg_text_scale, mask=mask_pil, random_seed=random_seed)
negative_image_cond = negative_image_cond.to(torch_dtype).to(device)
else:
negative_image_cond = torch.zeros_like(image_cond)
# negative_prompt_embeds
image_source = torch.tensor(np.array(image_source))
depth_map = einops.repeat(generate_depth_map(image_source, height, width), 'n c h w -> n (c r) h w', r=3).float().cpu()
images = model_dict['pipe'](text_input,
image=image_source,
mask=mask,
depth_map=depth_map,
num_inference_steps=int(steps),
image_cond_embeds=image_cond,
negative_image_cond_embeds=negative_image_cond,
guidance_scale=cfg_image_space_scale,
use_depth_map_as_input=use_depth_map_as_input,
apply_mask_to_input=use_mask,
mode=mode,
generator=torch.manual_seed(random_seed),
num_images_per_prompt=2).images
if do_sr:
images = model_dict['sr_model'].predict(images)
return images, [org_image_source, mask_pil, to_pil_image(0.5 * (depth_map[0] + 1.0))]
def generate_canvas(image):
return Image.fromarray((np.ones([512, 512, 3]) * 255).astype('uint8'))
def surprise_me():
return random.sample(model_dict['prompt_candidates'], k=1)[0]
if __name__ == "__main__":
parser = argparse.ArgumentParser('Demo')
parser.add_argument('--model_folder', default=None, type=str, help='path to model_folder')
args = parser.parse_args()
global model_dict
model_dict = build_models(args)
### define gradio demo
title = 'Graphit demo'
md_title = f'''# {title}
Diffusion on {model_dict["device"]}. [https://github.com/navervision/Graphit](https://github.com/navervision/Graphit)
If you want to use Graphit in a private GPU environment, please press the "Duplicate" button below.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co./spaces/navervision/Graphit-SD?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co./datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
'''
neg_default = '' #'watermark, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
with gr.Blocks(title=title) as demo:
gr.Markdown(md_title)
mode_t2i = gr.Textbox(value='t2i', label='mode selection', visible=False)
mode_i2i = gr.Textbox(value='i2i', label='mode selection', visible=False)
mode_inpaint = gr.Textbox(value='inpaint', label='mode selection', visible=False)
mode_s2i = gr.Textbox(value='s2i', label='mode selection', visible=False)
mode_scr2i = gr.Textbox(value='scr2i', label='mode selection', visible=False)
mode_d2i = gr.Textbox(value='d2i', label='mode selection', visible=False)
mode_e2i = gr.Textbox(value='e2i', label='mode selection', visible=False)
mode_inped = gr.Textbox(value='inped', label='mode selection', visible=False)
mode_cs2i = gr.Textbox(value='cs2i', label='mode selection', visible=False)
mask_scale_default = gr.Number(value=1.0, label='mask scale', visible=False)
use_edge_default = gr.Checkbox(value=True, label='use color map with edge map', visible=False)
height_default = gr.Number(value=512, precision=0, label='height', visible=False)
width_default = gr.Number(value=512, precision=0, label='width', visible=False)
with gr.Row():
with gr.Column():
with gr.Tabs():
'''
image to image
inpainting
depth to image
saliency map to image
'''
with gr.TabItem("Text to Image"):
image_source_t2i = gr.Image(type='pil', label='Source image', visible=False)
with gr.Row():
steps_input_t2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_t2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_t2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_t2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_t2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_t2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_t2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
with gr.Row():
height_t2i = gr.Number(value=512, precision=0, label='height (~512)')
width_t2i = gr.Number(value=512, precision=0, label='width (~512)')
submit_button_t2i = gr.Button('Generate images')
with gr.TabItem("Image to Image"):
image_source_i2i = gr.Image(type='pil', label='Source image')
with gr.Row():
steps_input_i2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_i2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_i2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_i2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_i2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_i2i = gr.Number(value=0.05, label='weight for mixing source image (0.0~1.0)')
cfg_image_reference_mix_weight_i2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
submit_button_i2i = gr.Button('Generate images')
with gr.TabItem("Depth to Image"):
image_source_d2i = gr.Image(type='pil', label='Source image')
with gr.Row():
steps_input_d2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_d2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_d2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_d2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_d2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_d2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_d2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)')
submit_button_d2i = gr.Button('Generate images')
with gr.TabItem("Edge to Image"):
image_source_e2i = gr.Image(type='pil', label='Source image')
with gr.Row():
steps_input_e2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_e2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_e2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_e2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_e2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_e2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_e2i = gr.Number(value=1.0, label='weight for mixing reference image (0.0~1.0)')
submit_button_e2i = gr.Button('Generate images')
with gr.TabItem("Inpaint"):
image_source_inp = gr.Image(type='pil', label='Source image', tool='sketch')
with gr.Row():
steps_input_inp = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_inp = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_inp = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_inp = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_inp = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_inp = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_inp = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
submit_button_inp = gr.Button('Generate images')
with gr.TabItem("Blending"):
image_source_inped = gr.Image(type='pil', label='Source image', tool='sketch')
with gr.Row():
steps_input_inped = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_inped = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_inped = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_inped = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_inped = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_inped = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_inped = gr.Number(value=0.35, label='weight for mixing reference image (0.0~1.0)')
with gr.Row():
mask_scale_inped = gr.Number(value=1.0, label='edge scale')
use_edge_inped = gr.Checkbox(value=False, label='use a color map with an edge map')
submit_button_inped = gr.Button('Generate images')
with gr.TabItem("Sketch (Rough) to Image"):
with gr.Column():
image_source_s2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=100).style(height=256, width=256)
build_canvas_s2i = gr.Button('Build canvas')
with gr.Row():
steps_input_s2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_s2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_s2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_s2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_s2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_s2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_s2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
mask_scale_s2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)')
submit_button_s2i = gr.Button('Generate images')
with gr.TabItem("Sketch (Detail) to Image"):
with gr.Column():
image_source_scr2i = gr.Image(type='pil', label='Source image', tool='sketch', brush_radius=10).style(height=256, width=256)
build_canvas_scr2i = gr.Button('Build canvas')
with gr.Row():
steps_input_scr2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_scr2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_scr2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_scr2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_scr2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_scr2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_scr2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
mask_scale_scr2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)')
submit_button_scr2i = gr.Button('Generate images')
with gr.TabItem("Color Sketch to Image"):
with gr.Column():
image_source_cs2i = gr.Image(type='pil', source='canvas', label='Source image', tool='color-sketch').style(height=256, width=256)
#build_canvas_cs2i = gr.Button('Build canvas')
with gr.Row():
steps_input_cs2i = gr.Radio(['5', '10', '25', '50'], value='25', label='denoising steps')
random_seed_cs2i = gr.Number(value=12345, precision=0, label='Seed')
with gr.Accordion('Advanced options', open=False):
with gr.Row():
cfg_image_scale_cs2i = gr.Number(value=1.1, label='attn source image scale', visible=False)
cfg_image_space_scale_cs2i = gr.Number(value=7.5, label='attn image space scale')
cfg_text_scale_cs2i = gr.Number(value=7.5, label='attn text scale')
with gr.Row():
cfg_image_source_mix_weight_cs2i = gr.Number(value=0.0, label='weight for mixing source image (0.0~1.0)', visible=False)
cfg_image_reference_mix_weight_cs2i = gr.Number(value=0.65, label='weight for mixing reference image (0.0~1.0)')
mask_scale_cs2i = gr.Number(value=0.5, label='sketch weight (0.0~1.0)')
submit_button_cs2i = gr.Button('Generate images')
text_input = gr.Textbox(value='', label='Input text')
negative_text_input = gr.Textbox(value=neg_default, label='Negative text')
submit_surprise_me = gr.Button('Surprise me')
#swap_button = gr.Button('Swap source with reference', visible=False)
with gr.Column():
with gr.Row():
do_sr = gr.Checkbox(value=False, label='Super-resolution')
image_reference = gr.Image(type='pil', label='Reference image')
gallery_outputs = gr.Gallery(label='Generated outputs').style(grid=[2], height='auto')
gallery_inputs = gr.Gallery(label='Processed inputs').style(grid=[2], height='auto')
submit_button_t2i.click(generate, inputs=[image_source_t2i, image_reference, text_input, negative_text_input, steps_input_t2i, random_seed_t2i, cfg_image_scale_t2i, cfg_text_scale_t2i, cfg_image_space_scale_t2i, cfg_image_reference_mix_weight_t2i, cfg_image_source_mix_weight_t2i, mask_scale_default, use_edge_default, height_t2i, width_t2i, do_sr, mode_t2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_i2i.click(generate, inputs=[image_source_i2i, image_reference, text_input, negative_text_input, steps_input_i2i, random_seed_i2i, cfg_image_scale_i2i, cfg_text_scale_i2i, cfg_image_space_scale_i2i, cfg_image_reference_mix_weight_i2i, cfg_image_source_mix_weight_i2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_i2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_d2i.click(generate, inputs=[image_source_d2i, image_reference, text_input, negative_text_input, steps_input_d2i, random_seed_d2i, cfg_image_scale_d2i, cfg_text_scale_d2i, cfg_image_space_scale_d2i, cfg_image_reference_mix_weight_d2i, cfg_image_source_mix_weight_d2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_d2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_e2i.click(generate, inputs=[image_source_e2i, image_reference, text_input, negative_text_input, steps_input_e2i, random_seed_e2i, cfg_image_scale_e2i, cfg_text_scale_e2i, cfg_image_space_scale_e2i, cfg_image_reference_mix_weight_e2i, cfg_image_source_mix_weight_e2i, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_e2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_inp.click(generate, inputs=[image_source_inp, image_reference, text_input, negative_text_input, steps_input_inp, random_seed_inp, cfg_image_scale_inp, cfg_text_scale_inp, cfg_image_space_scale_inp, cfg_image_reference_mix_weight_inp, cfg_image_source_mix_weight_inp, mask_scale_default, use_edge_default, height_default, width_default, do_sr, mode_inpaint], outputs=[gallery_outputs, gallery_inputs])
submit_button_inped.click(generate, inputs=[image_source_inped, image_reference, text_input, negative_text_input, steps_input_inped, random_seed_inped, cfg_image_scale_inped, cfg_text_scale_inped, cfg_image_space_scale_inped, cfg_image_reference_mix_weight_inped, cfg_image_source_mix_weight_inped, mask_scale_inped, use_edge_inped, height_default, width_default, do_sr, mode_inped], outputs=[gallery_outputs, gallery_inputs])
submit_button_s2i.click(generate, inputs=[image_source_s2i, image_reference, text_input, negative_text_input, steps_input_s2i, random_seed_s2i, cfg_image_scale_s2i, cfg_text_scale_s2i, cfg_image_space_scale_s2i, cfg_image_reference_mix_weight_s2i, cfg_image_source_mix_weight_s2i, mask_scale_s2i, use_edge_default, height_default, width_default, do_sr, mode_s2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_scr2i.click(generate, inputs=[image_source_scr2i, image_reference, text_input, negative_text_input, steps_input_scr2i, random_seed_scr2i, cfg_image_scale_scr2i, cfg_text_scale_scr2i, cfg_image_space_scale_scr2i, cfg_image_reference_mix_weight_scr2i, cfg_image_source_mix_weight_scr2i, mask_scale_scr2i, use_edge_default, height_default, width_default, do_sr, mode_scr2i], outputs=[gallery_outputs, gallery_inputs])
submit_button_cs2i.click(generate, inputs=[image_source_cs2i, image_reference, text_input, negative_text_input, steps_input_cs2i, random_seed_cs2i, cfg_image_scale_cs2i, cfg_text_scale_cs2i, cfg_image_space_scale_cs2i, cfg_image_reference_mix_weight_cs2i, cfg_image_source_mix_weight_cs2i, mask_scale_cs2i, use_edge_default, height_default, width_default, do_sr, mode_cs2i], outputs=[gallery_outputs, gallery_inputs])
build_canvas_s2i.click(generate_canvas, inputs=[image_source_s2i], outputs=[image_source_s2i], queue=False)
build_canvas_scr2i.click(generate_canvas, inputs=[image_source_scr2i], outputs=[image_source_scr2i], queue=False)
submit_surprise_me.click(surprise_me, outputs=[text_input], queue=False)
demo.queue()
demo.launch()
|