Spaces:
Runtime error
Runtime error
File size: 14,138 Bytes
3856316 258f222 3856316 258f222 3856316 258f222 3856316 258f222 3856316 258f222 3856316 258f222 3856316 258f222 3856316 258f222 3856316 03372c9 3856316 61570c5 3856316 61570c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
###########################################
# For fast downloads from Hugging Face Hub
# **Requires the hf_transfer package**
###########################################
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
###########################################
import json
import random
import typing as tp
from datetime import datetime
from pathlib import Path
from functools import partial
import gradio as gr
import torch
import torchaudio
import numpy as np
from audiocraft.models import musicgen
from audiocraft.data.audio import audio_write
from audiocraft.utils.notebook import display_audio
from pitch_correction_utils import autotune, closest_pitch, aclosest_pitch_from_scale
def ta_to_librosa_format(waveform):
"""
Convert an audio tensor from torchaudio format to librosa format.
Args:
waveform (torch.Tensor): Audio tensor from torchaudio with shape (n_channels, n_samples).
Returns:
np.ndarray: Audio array in librosa format with shape (n_samples,) or (2, n_samples).
"""
# Ensure waveform is in CPU and convert to numpy
waveform_np = waveform.numpy()
# Check if audio is mono or stereo and transpose if necessary
if waveform_np.shape[0] == 1:
# Remove the channel dimension for mono
waveform_np = waveform_np.squeeze(0)
else:
# Transpose to switch from (n_channels, n_samples) to (n_samples, n_channels)
waveform_np = waveform_np.transpose()
# Normalize to [-1, 1] if not already
if waveform_np.dtype in [np.int16, np.int32]:
waveform_np = waveform_np / np.iinfo(waveform_np.dtype).max
return waveform_np
def librosa_to_ta_format(waveform_np):
"""
Convert an audio array from librosa format to torchaudio format.
Args:
waveform_np (np.ndarray): Audio array from librosa with shape (n_samples,) or (2, n_samples).
Returns:
torch.Tensor: Audio tensor in torchaudio format with shape (n_channels, n_samples).
"""
# Ensure it is a float32 array normalized to [-1, 1]
waveform_np = np.array(waveform_np, dtype=np.float32)
if waveform_np.ndim == 1:
# Add a channel dimension for mono
waveform_np = waveform_np[np.newaxis, :]
else:
# Transpose to switch from (n_samples, n_channels) to (n_channels, n_samples)
waveform_np = waveform_np.transpose()
# Convert numpy array to PyTorch tensor
waveform = torch.from_numpy(waveform_np)
return waveform
def run_autotune(y, sr, correction_method="closest", scale=None):
# Only mono-files are handled. If stereo files are supplied, only the first channel is used.
if y.ndim > 1:
y = y[0, :]
# Pick the pitch adjustment strategy according to the arguments.
correction_function = closest_pitch if correction_method == 'closest' else \
partial(aclosest_pitch_from_scale, scale=scale)
# Torchaudio -> librosa
y = ta_to_librosa_format(y)
# Autotune
pitch_corrected_y = autotune(y, sr, correction_function, plot=False)
# Librosa -> torchaudio
pitch_corrected_y = librosa_to_ta_format(pitch_corrected_y)
return pitch_corrected_y
def set_all_seeds(seed):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def _preprocess_audio(
audio_path, model: musicgen.MusicGen, duration: tp.Optional[int] = None
):
wav, sr = torchaudio.load(audio_path)
wav = torchaudio.functional.resample(wav, sr, model.sample_rate)
wav = wav.mean(dim=0, keepdim=True)
# Calculate duration in seconds if not provided
if duration is None:
duration = wav.shape[1] / model.sample_rate
# Check if duration is more than 30 seconds
if duration > 30:
raise ValueError("Duration cannot be more than 30 seconds")
end_sample = int(model.sample_rate * duration)
wav = wav[:, :end_sample]
assert wav.shape[0] == 1
assert wav.shape[1] == model.sample_rate * duration
wav = wav.cuda()
wav = wav.unsqueeze(1)
with torch.no_grad():
gen_audio = model.compression_model.encode(wav)
codes, scale = gen_audio
assert scale is None
return codes
def _get_stemmed_wav_patched(wav, sample_rate):
print("Skipping stem separation!")
return wav
class Pipeline:
def __init__(self, model_id, max_batch_size=4, do_skip_demucs=True):
self.model = musicgen.MusicGen.get_pretrained(model_id)
self.max_batch_size = max_batch_size
self.do_skip_demucs = do_skip_demucs
if self.do_skip_demucs:
self.model.lm.condition_provider.conditioners.self_wav._get_stemmed_wav = _get_stemmed_wav_patched
def __call__(
self,
prompt,
input_audio=None,
scale="closest",
continuation=False,
batch_size=1,
duration=15,
use_sampling=True,
temperature=1.0,
top_k=250,
top_p=0.0,
cfg_coef=3.0,
output_dir="./samples", # change to google drive if you'd like
normalization_strategy="loudness",
seed=-1,
continuation_start=0,
continuation_end=None,
):
print("Prompt:", prompt)
set_generation_params = lambda duration: self.model.set_generation_params(
duration=duration,
top_k=top_k,
top_p=top_p,
temperature=temperature,
cfg_coef=cfg_coef,
)
if not seed or seed == -1:
seed = torch.seed() % 2 ** 32 - 1
set_all_seeds(seed)
set_all_seeds(seed)
print(f"Using seed {seed}")
if not input_audio:
set_generation_params(duration)
wav, tokens = self.model.generate([prompt] * batch_size, progress=True, return_tokens=True)
else:
input_audio, sr = torchaudio.load(input_audio)
# Save a copy of the original input audio
original_input_audio = input_audio.clone()
print("Input audio shape:", input_audio.shape)
if scale != "none":
if scale == "closest":
print("Running pitch correction for 'closest' pitch")
input_audio = run_autotune(input_audio, sr, correction_method="closest")
else:
print("Running pitch correction for 'scale' pitch")
input_audio = run_autotune(input_audio, sr, correction_method="scale", scale=scale)
print(f"...Done running pitch correction. Shape after is {input_audio.shape}.\n")
else:
print("Skipping pitch correction, as 'scale' was set to none")
input_audio = input_audio[None] if input_audio.dim() == 2 else input_audio
continuation_start = 0 if not continuation_start else continuation_start
if continuation_end is None or continuation_end == -1:
continuation_end = input_audio.shape[2] / sr
if continuation_start > continuation_end:
raise ValueError(
"`continuation_start` must be less than or equal to `continuation_end`"
)
input_audio_wavform = input_audio[
..., int(sr * continuation_start) : int(sr * continuation_end)
]
input_audio_wavform = input_audio_wavform.repeat(batch_size, 1, 1)
# TODO - not using this - is that wrong??
input_audio_duration = input_audio_wavform.shape[-1] / sr
if continuation:
set_generation_params(duration) # + input_audio_duration) # SEE TODO above
print("Continuation wavform shape!", input_audio_wavform.shape)
wav, tokens = self.model.generate_continuation(
prompt=input_audio_wavform,
prompt_sample_rate=sr,
descriptions=[prompt] * batch_size,
progress=True,
return_tokens=True
)
else:
print("Melody wavform shape!", input_audio_wavform.shape)
set_generation_params(duration)
wav, tokens = self.model.generate_with_chroma(
[prompt] * batch_size, input_audio_wavform, sr, progress=True, return_tokens=True
)
wav, tokens = wav.cpu(), tokens.cpu()
# Write to files
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
dt_str = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
if input_audio is not None:
outfile_path = output_dir / f"{dt_str}_input_raw"
audio_write(
outfile_path,
original_input_audio,
sr,
strategy=normalization_strategy,
)
outfile_path = output_dir / f"{dt_str}_input_pitch_corrected"
audio_write(
outfile_path,
input_audio_wavform[0],
sr,
strategy=normalization_strategy,
)
for i in range(batch_size):
outfile_path = output_dir / f"{dt_str}_{i:02d}"
audio_write(
outfile_path,
wav[i],
self.model.sample_rate,
strategy=normalization_strategy,
)
json_out_path = output_dir / f"{dt_str}.json"
json_out_path.write_text(json.dumps(dict(
prompt=prompt,
batch_size=batch_size,
duration=duration,
use_sampling=use_sampling,
temperature=temperature,
top_k=top_k,
cfg_coef=cfg_coef,
)))
to_return = [None] * (self.max_batch_size + 1)
if input_audio is not None:
print(f"trying to return input audio wavform of shape: {input_audio_wavform.shape}")
to_return[0] = (sr, input_audio_wavform[0].T.numpy())
for i in range(batch_size):
to_return[i + 1] = (self.model.sample_rate, wav[i].T.numpy())
print(wav[i].shape)
return to_return
_description = """\
Hum an idea ➡️ get an AI generated music sample. Check out the model [here](https://huggingface.co./nateraw/musicgen-songstarter-v0.2) and the source code [here](https://github.com/nateraw/singing-songstarter).
The input audio will be pitch corrected unless you set `scale` to `"none"`. Set `scale` to `"closest"` to correct to nearest note (if unsure, use this). \
Ideally, you figure out what key you're singing in and set `scale` to that, so it corrects to only notes in that scale. \
It is incredibly important the audio passed to the model (which you'll get back as the first output) is clean in order to get good results. 🗑 in = 🗑 out.
Enjoy ❤️"""
def main(model_id="nateraw/musicgen-songstarter-v0.2", max_batch_size=4, share=False, debug=False):
pipeline = Pipeline(model_id, max_batch_size)
interface = gr.Interface(
fn=pipeline.__call__,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", value="synth, hip hop, melody, dark"),
gr.Audio(
sources=["microphone", "upload"],
waveform_options=gr.WaveformOptions(
waveform_color="#01C6FF",
waveform_progress_color="#0066B4",
skip_length=2,
show_controls=False,
),
type="filepath",
),
gr.Dropdown(["closest", "none", "A:maj", "A:min", "Bb:maj", "Bb:min", "B:maj", "B:min", "C:maj", "C:min", "Db:maj", "Db:min", "D:maj", "D:min", "Eb:maj", "Eb:min", "E:maj", "E:min", "F:maj", "F:min", "Gb:maj", "Gb:min", "G:maj", "G:min", "Ab:maj", "Ab:min"], label="Scale for pitch correction. Set to 'closest' if you don't know.", value="closest"),
gr.Checkbox(label="Is Continuation", value=False),
gr.Slider(label="Batch Size", value=1, minimum=1, maximum=pipeline.max_batch_size, step=1),
gr.Slider(label="Duration", value=15, minimum=4, maximum=30),
gr.Checkbox(label="Use Sampling", value=True),
gr.Slider(label="Temperature", value=1.0, minimum=0.0, maximum=2.0),
gr.Slider(label="Top K", value=250, minimum=0, maximum=1000),
gr.Slider(label="Top P", value=0.0, minimum=0.0, maximum=1.0),
gr.Slider(label="CFG Coef", value=3.0, minimum=0.0, maximum=10.0),
gr.Textbox(label="Output Dir", value="./samples"),
gr.Dropdown(["loudness", "clip", "peak", "rms"], value="loudness", label="Strategy for normalizing audio."),
gr.Slider(label="random seed", minimum=-1, maximum=9e8),
],
outputs=[gr.Audio(label=("Input " if i == 0 else "") + f"Audio {i}") for i in range(pipeline.max_batch_size + 1)],
title="🎶 Generate song ideas with musicgen-songstarter-v0.2 🎶",
description=_description,
examples=[
["synth, dark, hip hop, melody, trap", "./nate_is_singing_Gb_minor.wav", "Gb:min", False, 1, 7, True, 1.0, 250, 0.0, 3.0, "./samples", "loudness", -1],
["music, mallets, bells, melody, dancehall, african, afropop & afrobeats", "./nate_is_singing_Gb_minor.wav", "Gb:min", False, 1, 7, True, 1.0, 250, 0.0, 4.5, "./samples", "loudness", -1],
],
cache_examples=False
)
interface.launch(share=share, debug=debug)
if __name__ == '__main__':
from fire import Fire
Fire(main)
# For testing
# pipe = Pipeline("nateraw/musicgen-songstarter-v0.2", max_batch_size=4)
# example_input = (
# "hip hop, soul, piano, chords, jazz, neo jazz, G# minor, 140 bpm",
# "nate_is_humming.wav",
# "closest",
# False,
# 1,
# 8,
# True,
# 1.0,
# 250,
# 0.0,
# 3.0,
# "./samples",
# "loudness",
# -1,
# 0,
# None
# )
# out = pipe(*example_input)
|