Spaces:
Runtime error
Runtime error
import torch | |
from dataclasses import dataclass | |
from opentelemetry import trace | |
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase | |
from typing import Optional, Tuple, List, Type, Dict | |
from text_generation_server.models import Model | |
from text_generation_server.models.types import ( | |
Batch, | |
PrefillTokens, | |
Generation, | |
GeneratedText, | |
) | |
from text_generation_server.pb import generate_pb2 | |
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling | |
tracer = trace.get_tracer(__name__) | |
class CausalLMBatch(Batch): | |
batch_id: int | |
requests: List[generate_pb2.Request] | |
requests_idx_mapping: Dict[int, int] | |
# Decoder values | |
input_ids: torch.Tensor | |
attention_mask: torch.Tensor | |
position_ids: torch.Tensor | |
past_key_values: Optional[List[Tuple]] | |
# All tokens | |
all_input_ids: List[torch.Tensor] | |
# Lengths of all generations present in the batch | |
input_lengths: List[int] | |
offsets: List[Optional[int]] | |
token_offsets: List[Optional[int]] | |
# Generation helpers | |
next_token_choosers: List[NextTokenChooser] | |
stopping_criterias: List[StoppingCriteria] | |
# Metadata used for padding | |
max_input_length: int | |
padding_right_offset: int | |
# Maximum number of tokens this batch will grow to | |
max_tokens: int | |
# Past metadata | |
keys_head_dim_last: bool = True | |
def to_pb(self) -> generate_pb2.Batch: | |
return generate_pb2.Batch( | |
id=self.batch_id, | |
requests=self.requests, | |
size=len(self), | |
max_tokens=self.max_tokens, | |
) | |
def from_pb( | |
cls, | |
pb: generate_pb2.Batch, | |
tokenizer: PreTrainedTokenizerBase, | |
device: torch.device, | |
) -> "CausalLMBatch": | |
inputs = [] | |
next_token_choosers = [] | |
stopping_criterias = [] | |
offsets = [] | |
token_offsets = [] | |
requests_idx_mapping = {} | |
# Parse batch | |
max_truncation = 0 | |
padding_right_offset = 0 | |
max_decode_tokens = 0 | |
for i, r in enumerate(pb.requests): | |
requests_idx_mapping[r.id] = i | |
inputs.append(r.inputs) | |
offsets.append(None) | |
token_offsets.append(None) | |
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device)) | |
stopping_criteria = StoppingCriteria.from_pb( | |
r.stopping_parameters, tokenizer | |
) | |
stopping_criterias.append(stopping_criteria) | |
max_truncation = max(max_truncation, r.truncate) | |
max_decode_tokens += stopping_criteria.max_new_tokens | |
padding_right_offset = max( | |
padding_right_offset, stopping_criteria.max_new_tokens | |
) | |
tokenized_inputs = tokenizer( | |
inputs, | |
return_tensors="pt", | |
padding=True, | |
return_token_type_ids=False, | |
truncation=True, | |
max_length=max_truncation, | |
).to(device) | |
input_lengths = tokenized_inputs["attention_mask"].sum(1) | |
max_input_length = input_lengths.max() | |
input_ids = tokenized_inputs["input_ids"] | |
# Allocate maximum attention_mask | |
attention_mask = input_ids.new_zeros( | |
(pb.size, max_input_length + padding_right_offset) | |
) | |
# Copy tokenizer attention_mask into fully allocated attention_mask | |
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"] | |
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1 | |
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1) | |
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1) | |
max_tokens = len(inputs) * max_input_length + max_decode_tokens | |
return cls( | |
batch_id=pb.id, | |
requests=pb.requests, | |
requests_idx_mapping=requests_idx_mapping, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=None, | |
all_input_ids=list(all_input_ids), | |
input_lengths=input_lengths.tolist(), | |
offsets=offsets, | |
token_offsets=token_offsets, | |
next_token_choosers=next_token_choosers, | |
stopping_criterias=stopping_criterias, | |
max_input_length=max_input_length.item(), | |
padding_right_offset=padding_right_offset, | |
max_tokens=max_tokens, | |
) | |
def filter(self, requests: List[generate_pb2.Request]) -> Optional["CausalLMBatch"]: | |
if len(requests) == 0: | |
raise ValueError("Batch must have at least one request") | |
if len(requests) == len(self): | |
return self | |
keep_indices = [] | |
# New values after filtering | |
requests_idx_mapping = {} | |
input_lengths = [] | |
offsets = [] | |
token_offsets = [] | |
all_input_ids = [] | |
max_input_length = 0 | |
next_token_choosers = [] | |
stopping_criterias = [] | |
total_remaining_decode_tokens = 0 | |
new_padding_right_offset = 0 | |
for i, r in enumerate(requests): | |
idx = self.requests_idx_mapping[r.id] | |
requests_idx_mapping[r.id] = i | |
keep_indices.append(idx) | |
offsets.append(self.offsets[idx]) | |
token_offsets.append(self.token_offsets[idx]) | |
all_input_ids.append(self.all_input_ids[idx]) | |
request_input_length = self.input_lengths[idx] | |
input_lengths.append(request_input_length) | |
max_input_length = max(max_input_length, request_input_length) | |
next_token_choosers.append(self.next_token_choosers[idx]) | |
stopping_criteria = self.stopping_criterias[idx] | |
stopping_criterias.append(stopping_criteria) | |
remaining_decode_tokens = ( | |
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens | |
) | |
total_remaining_decode_tokens += remaining_decode_tokens | |
new_padding_right_offset = max( | |
new_padding_right_offset, remaining_decode_tokens | |
) | |
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached | |
input_ids = self.input_ids[keep_indices] | |
position_ids = self.position_ids[keep_indices] | |
self.attention_mask = self.attention_mask[ | |
keep_indices, | |
-(self.padding_right_offset + max_input_length) : ( | |
self.attention_mask.shape[1] - self.padding_right_offset | |
) | |
+ new_padding_right_offset, | |
] | |
# Ensure that past_key_values tensors can be updated in-place | |
if type(self.past_key_values[0]) == tuple: | |
self.past_key_values = [list(layer) for layer in self.past_key_values] | |
# Update tensors in-place to allow incremental garbage collection | |
past_kv_length = max_input_length - 1 | |
for layer in self.past_key_values: | |
past_keys, past_values = layer | |
if len(past_keys.shape) == 3: | |
# Force past to be of dim [self_size, num_heads, ...] for easy indexing | |
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:]) | |
past_values = past_values.view(len(self), -1, *past_values.shape[-2:]) | |
if self.keys_head_dim_last: | |
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :] | |
else: | |
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:] | |
del past_keys | |
layer[1] = past_values[keep_indices, :, -past_kv_length:, :] | |
del past_values | |
max_tokens = len(requests) * max_input_length + total_remaining_decode_tokens | |
self.requests = requests | |
self.requests_idx_mapping = requests_idx_mapping | |
self.input_ids = input_ids | |
self.position_ids = position_ids | |
self.all_input_ids = all_input_ids | |
self.input_lengths = input_lengths | |
self.offsets = offsets | |
self.token_offsets = token_offsets | |
self.next_token_choosers = next_token_choosers | |
self.stopping_criterias = stopping_criterias | |
self.max_input_length = max_input_length | |
self.padding_right_offset = new_padding_right_offset | |
self.max_tokens = max_tokens | |
return self | |
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch": | |
# Used for padding | |
total_batch_size = 0 | |
max_input_length = 0 | |
padding_right_offset = 0 | |
for batch in batches: | |
total_batch_size += len(batch) | |
max_input_length = max(max_input_length, batch.max_input_length) | |
padding_right_offset = max(padding_right_offset, batch.padding_right_offset) | |
# Batch attributes | |
requests = [] | |
requests_idx_mapping = {} | |
input_lengths = [] | |
offsets = [] | |
token_offsets = [] | |
all_input_ids = [] | |
next_token_choosers = [] | |
stopping_criterias = [] | |
max_tokens = 0 | |
# Batch tensors | |
input_ids = None | |
attention_mask = None | |
position_ids = None | |
past_key_values = [] | |
# Used for slicing correctly inside the tensors | |
# Equivalent to a cumsum on batch sizes | |
start_index = 0 | |
for i, batch in enumerate(batches): | |
requests.extend(batch.requests) | |
input_lengths.extend(batch.input_lengths) | |
offsets.extend(batch.offsets) | |
token_offsets.extend(batch.token_offsets) | |
all_input_ids.extend(batch.all_input_ids) | |
next_token_choosers.extend(batch.next_token_choosers) | |
stopping_criterias.extend(batch.stopping_criterias) | |
if i == 0: | |
requests_idx_mapping = batch.requests_idx_mapping | |
else: | |
# We need to offset the mapping for each batch by the cumulative batch size | |
for k, v in batch.requests_idx_mapping.items(): | |
requests_idx_mapping[k] = v + start_index | |
# Slicing end index for this batch | |
end_index = start_index + len(batch) | |
# We only concatenate batches that did at least one step | |
if batch.past_key_values is None: | |
raise ValueError("only concatenate prefilled batches") | |
# Create empty tensor | |
# input_ids is always of shape [batch_size, 1] | |
# We do not need to pad it | |
if input_ids is None: | |
input_ids = batch.input_ids.new_empty((total_batch_size, 1)) | |
# Copy to correct indices | |
input_ids[start_index:end_index] = batch.input_ids | |
# Create padded tensor | |
if attention_mask is None: | |
attention_mask = batch.attention_mask.new_zeros( | |
(total_batch_size, max_input_length + padding_right_offset), | |
) | |
# We need to slice the attention mask to remove padding from previous steps | |
# and to remove unused allocated space | |
left_offset = max_input_length - batch.max_input_length | |
batch_left_offset = ( | |
batch.attention_mask.shape[1] | |
- batch.max_input_length | |
- batch.padding_right_offset | |
) | |
attention_mask[ | |
start_index:end_index, | |
left_offset:-padding_right_offset, | |
] = batch.attention_mask[ | |
:, | |
batch_left_offset : -batch.padding_right_offset, | |
] | |
# Create empty tensor | |
# position_ids is always of shape [batch_size, 1] | |
if position_ids is None: | |
position_ids = batch.position_ids.new_empty((total_batch_size, 1)) | |
position_ids[start_index:end_index] = batch.position_ids | |
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape | |
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length] | |
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim] | |
# And ensure that we can update tensors in-place | |
if type(batch.past_key_values[0]) == tuple: | |
batch.past_key_values = [ | |
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer] | |
for layer in batch.past_key_values | |
] | |
elif len(batch.past_key_values[0][0].shape) == 3: | |
for layer in batch.past_key_values: | |
for k, t in enumerate(layer): | |
layer[k] = t.view(len(batch), -1, *t.shape[-2:]) | |
# Add eventual padding tokens that were added while concatenating | |
max_tokens += batch.max_tokens + ( | |
max_input_length - batch.max_input_length | |
) * len(batch) | |
start_index = end_index | |
first_past_kvs = batches[0].past_key_values | |
_, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape | |
padded_past_values_shape = ( | |
total_batch_size, | |
num_heads, | |
max_input_length - 1, | |
head_dim, | |
) | |
if batches[0].keys_head_dim_last: | |
padded_past_keys_shape = padded_past_values_shape | |
else: | |
# seq_length is last for BLOOM | |
padded_past_keys_shape = ( | |
total_batch_size, | |
num_heads, | |
head_dim, | |
max_input_length - 1, | |
) | |
# Iterate over attention layers | |
# Concatenate past key values layer by layer to allow incremental garbage collection | |
for j in range(len(first_past_kvs)): | |
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape) | |
start_index = 0 | |
for batch in batches: | |
past_keys = batch.past_key_values[j][0] | |
# Clear reference to the original tensor | |
batch.past_key_values[j][0] = None | |
# Slicing end index for this batch | |
end_index = start_index + len(batch) | |
# We slice the keys to remove the padding from previous batches | |
past_seq_len = batch.max_input_length - 1 | |
if batch.keys_head_dim_last: | |
padded_past_keys[ | |
start_index:end_index, :, -past_seq_len:, : | |
] = past_keys[:, :, -past_seq_len:, :] | |
else: | |
# BLOOM case | |
padded_past_keys[ | |
start_index:end_index, :, :, -past_seq_len: | |
] = past_keys[:, :, :, -past_seq_len:] | |
del past_keys | |
start_index = end_index | |
padded_past_values = first_past_kvs[j][1].new_zeros( | |
padded_past_values_shape | |
) | |
start_index = 0 | |
for batch in batches: | |
past_values = batch.past_key_values[j][1] | |
# Clear reference to the original tensor | |
batch.past_key_values[j][1] = None | |
# Slicing end index for this batch | |
end_index = start_index + len(batch) | |
# We slice the past values to remove the padding from previous batches | |
past_seq_len = batch.max_input_length - 1 | |
padded_past_values[ | |
start_index:end_index, :, -past_seq_len:, : | |
] = past_values[:, :, -past_seq_len:, :] | |
del past_values | |
# Update values | |
start_index = end_index | |
past_key_values.append([padded_past_keys, padded_past_values]) | |
return cls( | |
batch_id=batches[0].batch_id, | |
requests=requests, | |
requests_idx_mapping=requests_idx_mapping, | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
all_input_ids=all_input_ids, | |
input_lengths=input_lengths, | |
offsets=offsets, | |
token_offsets=token_offsets, | |
next_token_choosers=next_token_choosers, | |
stopping_criterias=stopping_criterias, | |
max_input_length=max_input_length, | |
padding_right_offset=padding_right_offset, | |
keys_head_dim_last=batches[0].keys_head_dim_last, | |
max_tokens=max_tokens, | |
) | |
def __len__(self): | |
return len(self.requests) | |
class CausalLM(Model): | |
def __init__( | |
self, | |
model_id: str, | |
revision: Optional[str] = None, | |
quantize: bool = False, | |
decode_buffer: int = 3, | |
): | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32 | |
else: | |
if quantize: | |
raise ValueError("quantization is not available on CPU") | |
device = torch.device("cpu") | |
dtype = torch.float32 | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_id, revision=revision, padding_side="left", truncation_side="left" | |
) | |
self.model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
revision=revision, | |
torch_dtype=dtype, | |
device_map="auto" if torch.cuda.is_available() else None, | |
load_in_8bit=quantize, | |
).eval() | |
tokenizer.pad_token_id = ( | |
self.model.config.pad_token_id | |
if self.model.config.pad_token_id is not None | |
else self.model.config.eos_token_id | |
) | |
super(CausalLM, self).__init__( | |
tokenizer=tokenizer, | |
requires_padding=True, | |
dtype=dtype, | |
device=device, | |
decode_buffer=decode_buffer, | |
) | |
def batch_type(self) -> Type[CausalLMBatch]: | |
return CausalLMBatch | |
def decode(self, generated_ids: List[int]) -> str: | |
return self.tokenizer.decode( | |
generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False | |
) | |
def forward( | |
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None | |
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]: | |
# Model Forward | |
outputs = self.model.forward( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
use_cache=True, | |
) | |
return outputs.logits, outputs.past_key_values | |
def generate_token( | |
self, batch: CausalLMBatch | |
) -> Tuple[List[Generation], Optional[CausalLMBatch]]: | |
# slice the attention mask to the correct shape | |
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset] | |
logits, past = self.forward( | |
batch.input_ids, | |
attention_mask, | |
batch.position_ids, | |
batch.past_key_values, | |
) | |
# Results | |
generations: List[Generation] = [] | |
stopped = True | |
# Zipped iterator | |
iterator = zip( | |
batch.requests, | |
batch.input_lengths, | |
batch.offsets, | |
batch.token_offsets, | |
logits, | |
batch.next_token_choosers, | |
batch.stopping_criterias, | |
batch.all_input_ids, | |
) | |
# For each member of the batch | |
for i, ( | |
request, | |
input_length, | |
offset, | |
token_offset, | |
logits, | |
next_token_chooser, | |
stopping_criteria, | |
all_input_ids, | |
) in enumerate(iterator): | |
# Select next token | |
next_token_id, logprobs = next_token_chooser( | |
all_input_ids.view(1, -1), logits | |
) | |
# Append next token to all tokens | |
all_input_ids = torch.cat([all_input_ids, next_token_id]) | |
new_input_length = input_length + 1 | |
# Generated token | |
next_token_logprob = logprobs[-1, next_token_id] | |
next_token_id_squeezed = next_token_id.squeeze() | |
next_token_text, offset, token_offset = self.decode_token( | |
all_input_ids[:, 0], offset, token_offset | |
) | |
# Evaluate stopping criteria | |
stop, reason = stopping_criteria( | |
next_token_id_squeezed, | |
next_token_text, | |
) | |
if stop: | |
# Decode generated tokens | |
output_text = self.decode( | |
all_input_ids[-stopping_criteria.current_tokens :, 0] | |
) | |
# Get seed | |
if isinstance(next_token_chooser.choice, Sampling): | |
seed = next_token_chooser.choice.seed | |
else: | |
seed = None | |
generated_text = GeneratedText( | |
output_text, stopping_criteria.current_tokens, reason, seed | |
) | |
else: | |
# Keep request in the batch | |
generated_text = None | |
stopped = False | |
# Prefill | |
if stopping_criteria.current_tokens == 1: | |
# Remove generated token to only have prefill and add nan for first prompt token | |
prefill_logprobs = [float("nan")] + logprobs.gather( | |
1, all_input_ids[1:] | |
).squeeze(1)[-new_input_length:-1].tolist() | |
prefill_token_ids = all_input_ids[-new_input_length:-1] | |
prefill_texts = self.tokenizer.batch_decode( | |
prefill_token_ids, | |
clean_up_tokenization_spaces=False, | |
skip_special_tokens=False, | |
) | |
prefill_tokens = PrefillTokens( | |
prefill_token_ids, prefill_logprobs, prefill_texts | |
) | |
else: | |
prefill_tokens = None | |
generation = Generation( | |
request.id, | |
prefill_tokens, | |
next_token_id_squeezed, | |
next_token_logprob, | |
next_token_text, | |
next_token_id_squeezed.item() in self.all_special_ids, | |
generated_text, | |
) | |
generations.append(generation) | |
# Update values | |
batch.input_ids[i, 0] = next_token_id | |
batch.all_input_ids[i] = all_input_ids | |
batch.input_lengths[i] = new_input_length | |
batch.offsets[i] = offset | |
batch.token_offsets[i] = token_offset | |
batch.max_input_length = max(batch.max_input_length, new_input_length) | |
# We finished all generations in the batch; there is no next batch | |
if stopped: | |
return generations, None | |
# Slice unused values from prefill | |
batch.input_ids = batch.input_ids[:, :1] | |
# Update attention_mask as we added a new token to input_ids | |
batch.attention_mask[:, -batch.padding_right_offset] = 1 | |
# Decrease right offset | |
batch.padding_right_offset -= 1 | |
# Update position_ids | |
batch.position_ids = batch.position_ids[:, -1:] + 1 | |
# Update past key values | |
batch.past_key_values = past | |
return generations, batch | |