Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 Authors of "A Watermark for Large Language Models" | |
# available at https://arxiv.org/abs/2301.10226 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import torch | |
from transformers import LogitsProcessor | |
from typing import List, Union | |
GAMMA = os.getenv("WATERMARK_GAMMA", 0.5) | |
DELTA = os.getenv("WATERMARK_DELTA", 2.0) | |
class WatermarkLogitsProcessor(LogitsProcessor): | |
def __init__( | |
self, | |
gamma: float = GAMMA, | |
delta: float = DELTA, | |
hash_key: int = 15485863, # just a large prime number to create a rng seed with sufficient bit width | |
device: str = "cpu", | |
): | |
# watermarking parameters | |
self.gamma = gamma | |
self.delta = delta | |
self.rng = torch.Generator(device=device) | |
self.hash_key = hash_key | |
def _seed_rng(self, input_ids: Union[List[int], torch.LongTensor]): | |
if isinstance(input_ids, list): | |
assert ( | |
len(input_ids) >= 1 | |
), "requires at least a 1 token prefix sequence to seed rng" | |
prev_token = input_ids[-1] | |
else: | |
assert len(input_ids) == 1 | |
input_ids = input_ids[0] | |
assert ( | |
input_ids.shape[-1] >= 1 | |
), "requires at least a 1 token prefix sequence to seed rng" | |
prev_token = input_ids[-1].item() | |
self.rng.manual_seed(self.hash_key * prev_token) | |
def _get_greenlist_ids( | |
self, | |
input_ids: Union[List[int], torch.LongTensor], | |
max_value: int, | |
device: torch.device, | |
) -> List[int]: | |
# seed the rng using the previous tokens/prefix | |
self._seed_rng(input_ids) | |
greenlist_size = int(max_value * self.gamma) | |
vocab_permutation = torch.randperm(max_value, device=device, generator=self.rng) | |
greenlist_ids = vocab_permutation[:greenlist_size] | |
return greenlist_ids | |
def _calc_greenlist_mask( | |
scores: torch.FloatTensor, greenlist_token_ids | |
) -> torch.BoolTensor: | |
green_tokens_mask = torch.zeros_like(scores) | |
green_tokens_mask[-1, greenlist_token_ids] = 1 | |
final_mask = green_tokens_mask.bool() | |
return final_mask | |
def _bias_greenlist_logits( | |
scores: torch.Tensor, greenlist_mask: torch.Tensor, greenlist_bias: float | |
) -> torch.Tensor: | |
scores[greenlist_mask] = scores[greenlist_mask] + greenlist_bias | |
return scores | |
def __call__( | |
self, input_ids: Union[List[int], torch.LongTensor], scores: torch.FloatTensor | |
) -> torch.FloatTensor: | |
greenlist_ids = self._get_greenlist_ids( | |
input_ids, scores.shape[-1], scores.device | |
) | |
green_tokens_mask = self._calc_greenlist_mask( | |
scores=scores, greenlist_token_ids=greenlist_ids | |
) | |
scores = self._bias_greenlist_logits( | |
scores=scores, greenlist_mask=green_tokens_mask, greenlist_bias=self.delta | |
) | |
return scores | |