Spaces:
Runtime error
Runtime error
import pytest | |
import torch | |
from copy import copy | |
from transformers import AutoTokenizer | |
from text_generation_server.pb import generate_pb2 | |
from text_generation_server.models.seq2seq_lm import Seq2SeqLM, Seq2SeqLMBatch | |
def mt0_small_tokenizer(): | |
tokenizer = AutoTokenizer.from_pretrained( | |
"bigscience/mt0-small", padding_side="left" | |
) | |
tokenizer.bos_token_id = 0 | |
return tokenizer | |
def default_seq2seq_lm(): | |
return Seq2SeqLM("bigscience/mt0-small") | |
def default_pb_request(default_pb_parameters, default_pb_stop_parameters): | |
return generate_pb2.Request( | |
id=0, | |
inputs="Test", | |
truncate=100, | |
parameters=default_pb_parameters, | |
stopping_parameters=default_pb_stop_parameters, | |
) | |
def default_pb_batch(default_pb_request): | |
return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1) | |
def default_seq2seq_lm_batch(default_pb_batch, mt0_small_tokenizer): | |
return Seq2SeqLMBatch.from_pb( | |
default_pb_batch, mt0_small_tokenizer, torch.device("cpu") | |
) | |
def default_multi_requests_seq2seq_lm_batch(default_pb_request, mt0_small_tokenizer): | |
req_0 = copy(default_pb_request) | |
req_0.id = 1 | |
req_1 = default_pb_request | |
req_1.id = 2 | |
req_1.stopping_parameters.max_new_tokens = 5 | |
batch_pb = generate_pb2.Batch(id=0, requests=[req_0, req_1], size=2) | |
return Seq2SeqLMBatch.from_pb(batch_pb, mt0_small_tokenizer, torch.device("cpu")) | |
def test_batch_from_pb(default_pb_batch, default_seq2seq_lm_batch): | |
batch = default_seq2seq_lm_batch | |
sequence_length = len(default_seq2seq_lm_batch.input_ids[0]) | |
assert batch.batch_id == default_pb_batch.id | |
assert batch.requests == default_pb_batch.requests | |
assert batch.input_ids.shape == (default_pb_batch.size, sequence_length) | |
assert batch.input_ids[0][-2] == 4268 | |
assert batch.input_ids[0][-1] == 1 | |
assert torch.all(batch.input_ids[0][:-2] == 0) | |
assert torch.all(batch.attention_mask[0][-2:] == 1) | |
assert torch.all(batch.attention_mask[0][:-2] == 0) | |
assert len(batch.decoder_input_ids) == default_pb_batch.size | |
assert batch.decoder_attention_mask is None | |
assert batch.encoder_last_hidden_state is None | |
assert batch.past_key_values is None | |
assert batch.input_lengths == [2] | |
assert batch.decoder_input_lengths == [1] | |
assert len(batch) == default_pb_batch.size | |
assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == len(batch) | |
assert batch.max_input_length == batch.input_lengths[0] | |
assert batch.max_decoder_input_length == batch.decoder_input_lengths[0] | |
def test_batch_concatenate_no_prefill(default_seq2seq_lm_batch): | |
with pytest.raises(ValueError): | |
Seq2SeqLMBatch.concatenate([default_seq2seq_lm_batch, default_seq2seq_lm_batch]) | |
def test_seq2seq_lm_batch_type(default_seq2seq_lm): | |
assert default_seq2seq_lm.batch_type == Seq2SeqLMBatch | |
def test_seq2seq_lm_generate_token(default_seq2seq_lm, default_seq2seq_lm_batch): | |
sequence_length = len(default_seq2seq_lm_batch.input_ids[0]) | |
generations, next_batch = default_seq2seq_lm.generate_token( | |
default_seq2seq_lm_batch | |
) | |
assert len(generations) == len(next_batch) | |
assert isinstance(next_batch, Seq2SeqLMBatch) | |
assert next_batch.input_ids is None | |
assert torch.equal( | |
next_batch.attention_mask, default_seq2seq_lm_batch.attention_mask | |
) | |
assert next_batch.input_lengths == default_seq2seq_lm_batch.input_lengths | |
assert next_batch.max_input_length == default_seq2seq_lm_batch.max_input_length | |
assert ( | |
next_batch.next_token_choosers == default_seq2seq_lm_batch.next_token_choosers | |
) | |
assert next_batch.stopping_criterias == default_seq2seq_lm_batch.stopping_criterias | |
assert len(next_batch.decoder_input_ids) == len(next_batch) | |
assert next_batch.all_decoder_input_ids[0][0] == 0 | |
assert next_batch.all_decoder_input_ids[0][1] == 259 | |
assert next_batch.decoder_attention_mask is None | |
assert next_batch.encoder_last_hidden_state.shape == (1, sequence_length, 512) | |
assert next_batch.decoder_input_lengths == [2] | |
assert next_batch.max_decoder_input_length == 2 | |
assert next_batch.past_key_values is not None | |
assert all( | |
[p[0].shape == (len(next_batch), 6, 1, 64) for p in next_batch.past_key_values] | |
) | |
assert all( | |
[p[1].shape == (len(next_batch), 6, 1, 64) for p in next_batch.past_key_values] | |
) | |
assert all( | |
[ | |
p[2].shape == (len(next_batch), 6, sequence_length, 64) | |
for p in next_batch.past_key_values | |
] | |
) | |
assert all( | |
[ | |
p[3].shape == (len(next_batch), 6, sequence_length, 64) | |
for p in next_batch.past_key_values | |
] | |
) | |
assert all([generation.generated_text is None for generation in generations]) | |
assert all([len(generation.prefill_tokens) == 1 for generation in generations]) | |
assert all([generation.token_id.item() == 259 for generation in generations]) | |
assert all([generation.token_text == "" for generation in generations]) | |
assert generations[0].request_id == 0 | |
def test_seq2seq_lm_generate_token_completion( | |
default_seq2seq_lm, default_seq2seq_lm_batch | |
): | |
next_batch = default_seq2seq_lm_batch | |
for _ in range(6): | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert len(generations) == len(next_batch) | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert next_batch is None | |
assert len(generations) == 1 | |
assert generations[0].generated_text.text == "a few weeks" | |
assert generations[0].request_id == default_seq2seq_lm_batch.requests[0].id | |
assert generations[0].generated_text.generated_tokens == 7 | |
def test_seq2seq_lm_generate_token_completion_multi( | |
default_seq2seq_lm, default_multi_requests_seq2seq_lm_batch | |
): | |
next_batch = default_multi_requests_seq2seq_lm_batch | |
for i in range(4): | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert len(generations) == len(next_batch) | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert next_batch is not None | |
assert len(generations) == 2 | |
assert generations[1].generated_text.text == "a few " | |
assert ( | |
generations[1].request_id | |
== default_multi_requests_seq2seq_lm_batch.requests[1].id | |
) | |
assert generations[1].generated_text.generated_tokens == 5 | |
next_batch = next_batch.filter([next_batch.requests[0]]) | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert len(generations) == len(next_batch) | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert next_batch is None | |
assert len(generations) == 1 | |
assert generations[0].generated_text.text == "a few weeks" | |
assert ( | |
generations[0].request_id | |
== default_multi_requests_seq2seq_lm_batch.requests[0].id | |
) | |
assert generations[0].generated_text.generated_tokens == 7 | |
def test_batch_concatenate( | |
default_seq2seq_lm, | |
default_seq2seq_lm_batch, | |
default_multi_requests_seq2seq_lm_batch, | |
): | |
next_batch_0 = default_seq2seq_lm_batch | |
_, next_batch_0 = default_seq2seq_lm.generate_token(next_batch_0) | |
_, next_batch_0 = default_seq2seq_lm.generate_token(next_batch_0) | |
next_batch_1 = default_multi_requests_seq2seq_lm_batch | |
_, next_batch_1 = default_seq2seq_lm.generate_token(next_batch_1) | |
# Copy hidden state because it is removed from the concatenated branches | |
next_batch_0_encoder_last_hidden_state = next_batch_0.encoder_last_hidden_state | |
next_batch_1_encoder_last_hidden_state = next_batch_1.encoder_last_hidden_state | |
# Clone past_key_values before concatenating to compare after, | |
# because they are removed from the concatenated batches | |
next_batch_0_past_key_values = [ | |
[t.clone() for t in layer] for layer in next_batch_0.past_key_values | |
] | |
next_batch_1_past_key_values = [ | |
[t.clone() for t in layer] for layer in next_batch_1.past_key_values | |
] | |
next_batch = Seq2SeqLMBatch.concatenate([next_batch_0, next_batch_1]) | |
assert next_batch.batch_id == 0 | |
assert torch.equal( | |
next_batch.decoder_input_ids[0], next_batch_0.decoder_input_ids[0] | |
) | |
assert next_batch.all_decoder_input_ids[1][0] == 0 | |
assert next_batch.all_decoder_input_ids[2][0] == 0 | |
assert torch.equal( | |
next_batch.decoder_input_ids[1:, -2:], next_batch_1.decoder_input_ids | |
) | |
assert torch.all(next_batch.decoder_attention_mask[0, :3] == 1) | |
assert torch.all(next_batch.decoder_attention_mask[0, 3:] == 0) | |
assert torch.all(next_batch.decoder_attention_mask[1:, 0] == 0) | |
assert torch.all(next_batch.decoder_attention_mask[1:, 1:3] == 1) | |
assert torch.equal( | |
next_batch.encoder_last_hidden_state[0], | |
next_batch_0_encoder_last_hidden_state[0, -2:], | |
) | |
assert torch.equal( | |
next_batch.encoder_last_hidden_state[1:], | |
next_batch_1_encoder_last_hidden_state[:, -2:], | |
) | |
assert next_batch.input_lengths == [2, 2, 2] | |
assert next_batch.decoder_input_lengths == [3, 2, 2] | |
assert next_batch.max_input_length == 2 | |
assert next_batch.max_decoder_input_length == 3 | |
assert next_batch.requests[0] == next_batch_0.requests[0] | |
assert next_batch.requests[1:] == next_batch_1.requests | |
assert next_batch.next_token_choosers[0] == next_batch_0.next_token_choosers[0] | |
assert next_batch.next_token_choosers[1:] == next_batch_1.next_token_choosers | |
assert next_batch.stopping_criterias[0] == next_batch_0.stopping_criterias[0] | |
assert next_batch.stopping_criterias[1:] == next_batch_1.stopping_criterias | |
assert next_batch.past_key_values is not None | |
assert all( | |
[p[0].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values] | |
) | |
assert all( | |
[p[1].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values] | |
) | |
assert all( | |
[p[2].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values] | |
) | |
assert all( | |
[p[3].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values] | |
) | |
for i, past in enumerate(next_batch.past_key_values): | |
assert torch.equal(next_batch_0_past_key_values[i][0][0, :, -2:, :], past[0][0]) | |
assert torch.equal( | |
next_batch_1_past_key_values[i][0][:, :, -1:, :], past[0][1:, :, -1:, :] | |
) | |
assert torch.equal(next_batch_0_past_key_values[i][1][0, :, -2:, :], past[1][0]) | |
assert torch.equal( | |
next_batch_1_past_key_values[i][1][:, :, -1:, :], past[1][1:, :, -1:, :] | |
) | |
assert torch.equal(next_batch_0_past_key_values[i][2][0, :, -2:, :], past[2][0]) | |
assert torch.equal( | |
next_batch_1_past_key_values[i][2][:, :, -2:, :], past[2][1:] | |
) | |
assert torch.equal(next_batch_0_past_key_values[i][3][0, :, -2:, :], past[3][0]) | |
assert torch.equal( | |
next_batch_1_past_key_values[i][3][:, :, -2:, :], past[3][1:] | |
) | |
for _ in range(3): | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert len(generations) == len(next_batch) | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert next_batch is not None | |
assert len(generations) == 3 | |
assert generations[2].generated_text.text == "a few " | |
assert ( | |
generations[2].request_id | |
== default_multi_requests_seq2seq_lm_batch.requests[1].id | |
) | |
assert generations[2].generated_text.generated_tokens == 5 | |
next_batch = next_batch.filter([next_batch.requests[0], next_batch.requests[1]]) | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert next_batch is not None | |
assert len(generations) == 2 | |
assert generations[0].generated_text.text == "a few weeks" | |
assert generations[0].request_id == default_seq2seq_lm_batch.requests[0].id | |
assert generations[0].generated_text.generated_tokens == 7 | |
next_batch = next_batch.filter([next_batch.requests[1]]) | |
generations, next_batch = default_seq2seq_lm.generate_token(next_batch) | |
assert next_batch is None | |
assert len(generations) == 1 | |
assert generations[0].generated_text.text == "a few weeks" | |
assert ( | |
generations[0].request_id | |
== default_multi_requests_seq2seq_lm_batch.requests[0].id | |
) | |
assert generations[0].generated_text.generated_tokens == 7 | |