Spaces:
Runtime error
Runtime error
import pytest | |
import torch | |
from copy import copy | |
from transformers import AutoTokenizer | |
from text_generation_server.pb import generate_pb2 | |
from text_generation_server.models.causal_lm import CausalLMBatch | |
from text_generation_server.models.bloom import BloomCausalLMBatch, BLOOM | |
def default_bloom(): | |
return BLOOM("bigscience/bloom-560m") | |
def bloom_560m_tokenizer(): | |
return AutoTokenizer.from_pretrained("bigscience/bloom-560m", padding_side="left") | |
def default_pb_request(default_pb_parameters, default_pb_stop_parameters): | |
return generate_pb2.Request( | |
id=0, | |
inputs="Test", | |
truncate=100, | |
parameters=default_pb_parameters, | |
stopping_parameters=default_pb_stop_parameters, | |
) | |
def default_pb_batch(default_pb_request): | |
return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1) | |
def default_bloom_batch(default_pb_batch, bloom_560m_tokenizer): | |
return BloomCausalLMBatch.from_pb( | |
default_pb_batch, bloom_560m_tokenizer, torch.device("cpu") | |
) | |
def default_multi_requests_bloom_batch(default_pb_request, bloom_560m_tokenizer): | |
req_0 = copy(default_pb_request) | |
req_0.id = 1 | |
req_1 = default_pb_request | |
req_1.id = 2 | |
req_1.stopping_parameters.max_new_tokens = 5 | |
batch_pb = generate_pb2.Batch(id=0, requests=[req_0, req_1], size=2) | |
return BloomCausalLMBatch.from_pb( | |
batch_pb, bloom_560m_tokenizer, torch.device("cpu") | |
) | |
def test_batch_from_pb(default_pb_batch, default_bloom_batch): | |
batch = default_bloom_batch | |
assert batch.batch_id == default_pb_batch.id | |
assert batch.requests == default_pb_batch.requests | |
assert len(batch.input_ids) == default_pb_batch.size | |
assert batch.input_ids[0][-1] == 10264 | |
assert torch.all(batch.input_ids[0][:-1] == 3) | |
assert batch.attention_mask[0][0] == 1 | |
assert torch.all(batch.attention_mask[0][1:] == 0) | |
assert batch.past_key_values is None | |
assert all( | |
[ | |
torch.equal(input_ids, all_input_ids[:, 0]) | |
for input_ids, all_input_ids in zip(batch.input_ids, batch.all_input_ids) | |
] | |
) | |
assert batch.input_lengths == [1] | |
assert len(batch) == default_pb_batch.size | |
assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == len(batch) | |
assert batch.max_input_length == batch.input_lengths[0] | |
def test_batch_concatenate_no_prefill(default_bloom_batch): | |
with pytest.raises(ValueError): | |
BloomCausalLMBatch.concatenate([default_bloom_batch, default_bloom_batch]) | |
def test_causal_lm_batch_type(default_bloom): | |
assert default_bloom.batch_type == BloomCausalLMBatch | |
def test_causal_lm_generate_token(default_bloom, default_bloom_batch): | |
sequence_length = len(default_bloom_batch.all_input_ids[0]) | |
generations, next_batch = default_bloom.generate_token(default_bloom_batch) | |
assert len(generations) == len(default_bloom_batch) | |
assert isinstance(next_batch, CausalLMBatch) | |
assert not next_batch.keys_head_dim_last | |
assert len(next_batch.all_input_ids) == len(next_batch) | |
assert len(next_batch.all_input_ids[0]) == sequence_length + 1 | |
assert len(next_batch.attention_mask[0]) == 11 | |
assert torch.all(next_batch.all_input_ids[0][-2:] == 10264) | |
assert torch.all(next_batch.all_input_ids[0][:-2] == 3) | |
assert torch.all(next_batch.attention_mask[0][:2] == 1) | |
assert torch.all(next_batch.attention_mask[0][2:] == 0) | |
assert next_batch.input_ids.shape == (len(next_batch), 1) | |
assert next_batch.input_ids[0, 0] == 10264 | |
assert next_batch.input_lengths == [2] | |
assert next_batch.max_input_length == next_batch.input_lengths[0] | |
assert next_batch.past_key_values is not None | |
assert all( | |
[p[0].shape == (16, 64, sequence_length) for p in next_batch.past_key_values] | |
) | |
assert all( | |
[p[1].shape == (16, sequence_length, 64) for p in next_batch.past_key_values] | |
) | |
assert all([generation.generated_text is None for generation in generations]) | |
assert all([len(generation.prefill_tokens) == 1 for generation in generations]) | |
assert all([generation.token_id.item() == 10264 for generation in generations]) | |
assert all([generation.token_text == "Test" for generation in generations]) | |
assert generations[0].request_id == 0 | |
def test_causal_lm_generate_token_completion(default_bloom, default_bloom_batch): | |
next_batch = default_bloom_batch | |
for _ in range(default_bloom_batch.stopping_criterias[0].max_new_tokens - 1): | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert len(generations) == len(default_bloom_batch) | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert next_batch is None | |
assert len(generations) == 1 | |
assert ( | |
generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest" | |
) | |
assert generations[0].request_id == default_bloom_batch.requests[0].id | |
assert ( | |
generations[0].generated_text.generated_tokens | |
== default_bloom_batch.stopping_criterias[0].max_new_tokens | |
) | |
def test_causal_lm_generate_token_completion_multi( | |
default_bloom, default_multi_requests_bloom_batch | |
): | |
next_batch = default_multi_requests_bloom_batch | |
for i in range( | |
default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens - 1 | |
): | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert len(generations) == len(default_multi_requests_bloom_batch) | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert next_batch is not None | |
assert len(generations) == 2 | |
assert generations[1].generated_text.text == "TestTestTestTestTest" | |
assert ( | |
generations[1].request_id == default_multi_requests_bloom_batch.requests[1].id | |
) | |
assert ( | |
generations[1].generated_text.generated_tokens | |
== default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens | |
) | |
# Copy stopping_criterias before filtering | |
stopping_criterias = default_multi_requests_bloom_batch.stopping_criterias.copy() | |
next_batch = next_batch.filter([next_batch.requests[0]]) | |
for _ in range( | |
stopping_criterias[0].max_new_tokens - stopping_criterias[1].max_new_tokens - 1 | |
): | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert len(generations) == len(next_batch) | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert next_batch is None | |
assert len(generations) == 1 | |
assert ( | |
generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest" | |
) | |
assert ( | |
generations[0].request_id == default_multi_requests_bloom_batch.requests[0].id | |
) | |
assert ( | |
generations[0].generated_text.generated_tokens | |
== default_multi_requests_bloom_batch.stopping_criterias[0].max_new_tokens | |
) | |
def test_batch_concatenate( | |
default_bloom, default_bloom_batch, default_multi_requests_bloom_batch | |
): | |
next_batch_0 = default_bloom_batch | |
_, next_batch_0 = default_bloom.generate_token(next_batch_0) | |
_, next_batch_0 = default_bloom.generate_token(next_batch_0) | |
next_batch_1 = default_multi_requests_bloom_batch | |
_, next_batch_1 = default_bloom.generate_token(next_batch_1) | |
# Clone past_key_values before concatenating to compare after, | |
# because they are removed from the concatenated batches | |
next_batch_0_past_key_values = [ | |
(k.clone(), v.clone()) for (k, v) in next_batch_0.past_key_values | |
] | |
next_batch_1_past_key_values = [ | |
(k.clone(), v.clone()) for (k, v) in next_batch_1.past_key_values | |
] | |
next_batch = BloomCausalLMBatch.concatenate([next_batch_0, next_batch_1]) | |
assert torch.equal(next_batch.all_input_ids[0], next_batch_0.all_input_ids[0]) | |
assert torch.equal(next_batch.all_input_ids[1], next_batch_1.all_input_ids[0]) | |
assert torch.equal(next_batch.all_input_ids[2], next_batch_1.all_input_ids[1]) | |
assert torch.all( | |
next_batch.attention_mask[0, : -next_batch.padding_right_offset] == 1 | |
) | |
assert torch.all( | |
next_batch.attention_mask[1:, 1 : -next_batch.padding_right_offset] == 1 | |
) | |
assert torch.all(next_batch.attention_mask[1:, 3:] == 0) | |
assert next_batch.batch_id == 0 | |
assert torch.all(next_batch.input_ids == 10264) | |
assert next_batch.input_lengths == [3, 2, 2] | |
assert next_batch.max_input_length == 3 | |
assert next_batch.requests[0] == next_batch_0.requests[0] | |
assert next_batch.requests[1:] == next_batch_1.requests | |
assert next_batch.next_token_choosers[0] == next_batch_0.next_token_choosers[0] | |
assert next_batch.next_token_choosers[1:] == next_batch_1.next_token_choosers | |
assert next_batch.stopping_criterias[0] == next_batch_0.stopping_criterias[0] | |
assert next_batch.stopping_criterias[1:] == next_batch_1.stopping_criterias | |
assert next_batch.past_key_values is not None | |
assert all([p[0].shape == (3, 16, 64, 2) for p in next_batch.past_key_values]) | |
assert all([p[1].shape == (3, 16, 2, 64) for p in next_batch.past_key_values]) | |
for i, past in enumerate(next_batch.past_key_values): | |
assert torch.equal(next_batch_0_past_key_values[i][0][:, :, -2:], past[0][0]) | |
assert torch.equal( | |
next_batch_1_past_key_values[i][0][:, :, -1:], | |
past[0][1:, :, :, -1].reshape(-1, 64, 1), | |
) | |
assert torch.equal(next_batch_0_past_key_values[i][1][:, -2:, :], past[1][0]) | |
assert torch.equal( | |
next_batch_1_past_key_values[i][1][:, -1:, :], | |
past[1][1:, :, -1, :].reshape(-1, 1, 64), | |
) | |
for _ in range( | |
default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens - 2 | |
): | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert len(generations) == len(next_batch) | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert next_batch is not None | |
assert len(generations) == 3 | |
assert generations[2].generated_text.text == "TestTestTestTestTest" | |
assert ( | |
generations[2].request_id == default_multi_requests_bloom_batch.requests[1].id | |
) | |
assert ( | |
generations[2].generated_text.generated_tokens | |
== default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens | |
) | |
next_batch = next_batch.filter([next_batch.requests[0], next_batch.requests[1]]) | |
for _ in range( | |
default_bloom_batch.stopping_criterias[0].max_new_tokens | |
- default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens | |
- 2 | |
): | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert len(generations) == len(next_batch) | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert next_batch is not None | |
assert len(generations) == 2 | |
assert ( | |
generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest" | |
) | |
assert generations[0].request_id == default_bloom_batch.requests[0].id | |
assert ( | |
generations[0].generated_text.generated_tokens | |
== default_bloom_batch.stopping_criterias[0].max_new_tokens | |
) | |
next_batch = next_batch.filter([next_batch.requests[1]]) | |
for _ in range( | |
default_multi_requests_bloom_batch.stopping_criterias[0].max_new_tokens | |
- default_bloom_batch.stopping_criterias[0].max_new_tokens | |
- default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens | |
- 4 | |
): | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert len(generations) == len(next_batch) | |
generations, next_batch = default_bloom.generate_token(next_batch) | |
assert next_batch is None | |
assert len(generations) == 1 | |
assert ( | |
generations[0].generated_text.text == "TestTestTestTestTestTestTestTestTestTest" | |
) | |
assert ( | |
generations[0].request_id == default_multi_requests_bloom_batch.requests[0].id | |
) | |
assert ( | |
generations[0].generated_text.generated_tokens | |
== default_multi_requests_bloom_batch.stopping_criterias[0].max_new_tokens | |
) | |