Spaces:
Runtime error
Runtime error
use crate::infer::InferError; | |
use crate::infer::InferStreamResponse; | |
use crate::validation::ValidGenerateRequest; | |
use nohash_hasher::{BuildNoHashHasher, IntMap}; | |
use std::collections::VecDeque; | |
use text_generation_client::{Batch, Request}; | |
use tokio::sync::oneshot; | |
use tokio::time::Instant; | |
use tracing::{info_span, instrument, Span}; | |
/// Queue entry | |
pub(crate) struct Entry { | |
/// Request | |
pub request: ValidGenerateRequest, | |
/// Response sender to communicate between the Infer struct and the batching_task | |
pub response_tx: flume::Sender<Result<InferStreamResponse, InferError>>, | |
/// Span that will live as long as entry | |
pub span: Span, | |
/// Temporary span used as a guard when logging inference, wait times... | |
pub temp_span: Option<Span>, | |
/// Instant when this entry was queued | |
pub queue_time: Instant, | |
/// Instant when this entry was added to a batch | |
pub batch_time: Option<Instant>, | |
} | |
/// Request Queue | |
pub(crate) struct Queue { | |
/// Channel to communicate with the background queue task | |
queue_sender: flume::Sender<QueueCommand>, | |
} | |
impl Queue { | |
pub(crate) fn new(requires_padding: bool) -> Self { | |
// Create channel | |
let (queue_sender, queue_receiver) = flume::unbounded(); | |
// Launch background queue task | |
tokio::spawn(queue_task(requires_padding, queue_receiver)); | |
Self { queue_sender } | |
} | |
/// Append an entry to the queue | |
pub(crate) fn append(&self, entry: Entry) { | |
// Send append command to the background task managing the state | |
// Unwrap is safe here | |
self.queue_sender | |
.send(QueueCommand::Append(entry, Span::current())) | |
.unwrap(); | |
} | |
// Get the next batch | |
pub(crate) async fn next_batch( | |
&self, | |
min_size: Option<usize>, | |
token_budget: u32, | |
) -> Option<NextBatch> { | |
// Create response channel | |
let (response_sender, response_receiver) = oneshot::channel(); | |
// Send next batch command to the background task managing the state | |
// Unwrap is safe here | |
self.queue_sender | |
.send(QueueCommand::NextBatch { | |
min_size, | |
token_budget, | |
response_sender, | |
span: Span::current(), | |
}) | |
.unwrap(); | |
// Await on response channel | |
// Unwrap is safe here | |
response_receiver.await.unwrap() | |
} | |
} | |
// Background task responsible of the queue state | |
async fn queue_task(requires_padding: bool, receiver: flume::Receiver<QueueCommand>) { | |
let mut state = State::new(requires_padding); | |
while let Ok(cmd) = receiver.recv_async().await { | |
match cmd { | |
QueueCommand::Append(entry, span) => { | |
span.in_scope(|| state.append(entry)); | |
metrics::increment_gauge!("tgi_queue_size", 1.0); | |
} | |
QueueCommand::NextBatch { | |
min_size, | |
token_budget, | |
response_sender, | |
span, | |
} => span.in_scope(|| { | |
let next_batch = state.next_batch(min_size, token_budget); | |
response_sender.send(next_batch).unwrap_or(()); | |
metrics::gauge!("tgi_queue_size", state.entries.len() as f64); | |
}), | |
} | |
} | |
} | |
/// Queue State | |
struct State { | |
/// Queue entries organized in a Vec | |
entries: VecDeque<(u64, Entry)>, | |
/// Id of the next entry | |
next_id: u64, | |
/// Id of the next batch | |
next_batch_id: u64, | |
/// Whether the model is using padding | |
requires_padding: bool, | |
} | |
impl State { | |
fn new(requires_padding: bool) -> Self { | |
Self { | |
entries: VecDeque::with_capacity(128), | |
next_id: 0, | |
next_batch_id: 0, | |
requires_padding, | |
} | |
} | |
/// Append an entry to the queue | |
fn append(&mut self, mut entry: Entry) { | |
// Create a span that will live as long as the entry is in the queue waiting to be batched | |
let queue_span = info_span!(parent: &entry.span, "queued"); | |
entry.temp_span = Some(queue_span); | |
// Push entry in the queue | |
self.entries.push_back((self.next_id, entry)); | |
self.next_id += 1; | |
} | |
// Get the next batch | |
fn next_batch(&mut self, min_size: Option<usize>, token_budget: u32) -> Option<NextBatch> { | |
if self.entries.is_empty() { | |
return None; | |
} | |
// Check if we have enough entries | |
if let Some(min_size) = min_size { | |
if self.entries.len() < min_size { | |
return None; | |
} | |
} | |
// Create span for this batch to add context to inference calls | |
let next_batch_span = info_span!(parent: None, "batch", batch_size = tracing::field::Empty); | |
next_batch_span.follows_from(&Span::current()); | |
let mut batch_requests = Vec::with_capacity(self.entries.len()); | |
let mut batch_entries = | |
IntMap::with_capacity_and_hasher(self.entries.len(), BuildNoHashHasher::default()); | |
let mut max_input_length = 0; | |
let mut prefill_tokens: u32 = 0; | |
let mut decode_tokens: u32 = 0; | |
// Pop entries starting from the front of the queue | |
while let Some((id, mut entry)) = self.entries.pop_front() { | |
// Filter entries where the response receiver was dropped (== entries where the request | |
// was dropped by the client) | |
if entry.response_tx.is_disconnected() { | |
metrics::increment_counter!("tgi_request_failure", "err" => "dropped"); | |
continue; | |
} | |
if self.requires_padding { | |
// We pad to max input length in the Python shards | |
// We need to take these padding tokens into the equation | |
max_input_length = max_input_length.max(entry.request.input_length); | |
prefill_tokens = (batch_requests.len() + 1) as u32 * max_input_length | |
} else { | |
prefill_tokens += entry.request.input_length; | |
} | |
decode_tokens += entry.request.stopping_parameters.max_new_tokens; | |
if (prefill_tokens + decode_tokens) > token_budget { | |
// Entry is over budget | |
// Add it back to the front | |
self.entries.push_front((id, entry)); | |
break; | |
} | |
// Create a new span to link the batch back to this entry | |
let entry_batch_span = info_span!(parent: &entry.span, "infer"); | |
// Add relationships | |
next_batch_span.follows_from(&entry_batch_span); | |
entry_batch_span.follows_from(&next_batch_span); | |
// Update entry | |
entry.temp_span = Some(entry_batch_span); | |
batch_requests.push(Request { | |
id, | |
inputs: entry.request.inputs.clone(), | |
truncate: entry.request.truncate, | |
parameters: Some(entry.request.parameters.clone()), | |
stopping_parameters: Some(entry.request.stopping_parameters.clone()), | |
}); | |
// Set batch_time | |
entry.batch_time = Some(Instant::now()); | |
// Insert in batch_entries IntMap | |
batch_entries.insert(id, entry); | |
} | |
// Empty batch | |
if batch_requests.is_empty() { | |
return None; | |
} | |
// Check if our batch is big enough | |
if let Some(min_size) = min_size { | |
// Batch is too small | |
if batch_requests.len() < min_size { | |
// Add back entries to the queue in the correct order | |
for r in batch_requests.into_iter().rev() { | |
let id = r.id; | |
let entry = batch_entries.remove(&id).unwrap(); | |
self.entries.push_front((id, entry)); | |
} | |
return None; | |
} | |
} | |
// Final batch size | |
let size = batch_requests.len() as u32; | |
next_batch_span.record("batch_size", size); | |
let batch = Batch { | |
id: self.next_batch_id, | |
requests: batch_requests, | |
size, | |
max_tokens: (prefill_tokens + decode_tokens), | |
}; | |
// Increment batch id | |
self.next_batch_id += 1; | |
metrics::histogram!("tgi_batch_next_size", batch.size as f64); | |
Some((batch_entries, batch, next_batch_span)) | |
} | |
} | |
type NextBatch = (IntMap<u64, Entry>, Batch, Span); | |
enum QueueCommand { | |
Append(Entry, Span), | |
NextBatch { | |
min_size: Option<usize>, | |
token_budget: u32, | |
response_sender: oneshot::Sender<Option<NextBatch>>, | |
span: Span, | |
}, | |
} | |
mod tests { | |
use super::*; | |
use text_generation_client::{NextTokenChooserParameters, StoppingCriteriaParameters}; | |
use tracing::info_span; | |
fn default_entry() -> ( | |
Entry, | |
flume::Receiver<Result<InferStreamResponse, InferError>>, | |
) { | |
let (response_tx, receiver_tx) = flume::unbounded(); | |
let entry = Entry { | |
request: ValidGenerateRequest { | |
inputs: "".to_string(), | |
input_length: 0, | |
truncate: 0, | |
parameters: NextTokenChooserParameters { | |
temperature: 0.0, | |
top_k: 0, | |
top_p: 0.0, | |
typical_p: 0.0, | |
do_sample: false, | |
seed: 0, | |
repetition_penalty: 0.0, | |
watermark: false, | |
}, | |
stopping_parameters: StoppingCriteriaParameters { | |
ignore_eos_token: false, | |
max_new_tokens: 1, | |
stop_sequences: vec![], | |
}, | |
}, | |
response_tx, | |
span: info_span!("entry"), | |
temp_span: None, | |
queue_time: Instant::now(), | |
batch_time: None, | |
}; | |
(entry, receiver_tx) | |
} | |
fn test_append() { | |
let mut state = State::new(false); | |
let (entry, _guard) = default_entry(); | |
assert_eq!(state.next_id, 0); | |
assert_eq!(state.entries.len(), 0); | |
state.append(entry); | |
assert_eq!(state.next_id, 1); | |
assert_eq!(state.entries.len(), 1); | |
let (id, _) = state.entries.remove(0).unwrap(); | |
assert_eq!(id, 0); | |
} | |
fn test_next_batch_empty() { | |
let mut state = State::new(false); | |
assert!(state.next_batch(None, 1).is_none()); | |
assert!(state.next_batch(Some(1), 1).is_none()); | |
} | |
fn test_next_batch_min_size() { | |
let mut state = State::new(false); | |
let (entry1, _guard1) = default_entry(); | |
let (entry2, _guard2) = default_entry(); | |
state.append(entry1); | |
state.append(entry2); | |
let (entries, batch, _) = state.next_batch(None, 2).unwrap(); | |
assert_eq!(entries.len(), 2); | |
assert!(entries.contains_key(&0)); | |
assert!(entries.contains_key(&1)); | |
assert!(entries.get(&0).unwrap().batch_time.is_some()); | |
assert!(entries.get(&1).unwrap().batch_time.is_some()); | |
assert_eq!(batch.id, 0); | |
assert_eq!(batch.size, 2); | |
assert_eq!(state.next_id, 2); | |
assert_eq!(state.entries.len(), 0); | |
assert_eq!(state.next_batch_id, 1); | |
let (entry3, _guard3) = default_entry(); | |
state.append(entry3); | |
assert!(state.next_batch(Some(2), 2).is_none()); | |
assert_eq!(state.next_id, 3); | |
assert_eq!(state.entries.len(), 1); | |
let (id, _) = state.entries.remove(0).unwrap(); | |
assert_eq!(id, 2); | |
} | |
fn test_next_batch_token_budget() { | |
let mut state = State::new(false); | |
let (entry1, _guard1) = default_entry(); | |
let (entry2, _guard2) = default_entry(); | |
state.append(entry1); | |
state.append(entry2); | |
let (entries, batch, _) = state.next_batch(None, 1).unwrap(); | |
assert_eq!(entries.len(), 1); | |
assert!(entries.contains_key(&0)); | |
assert_eq!(batch.id, 0); | |
assert_eq!(batch.size, 1); | |
assert_eq!(state.next_id, 2); | |
assert_eq!(state.entries.len(), 1); | |
assert_eq!(state.next_batch_id, 1); | |
let (entry3, _guard3) = default_entry(); | |
state.append(entry3); | |
let (entries, batch, _) = state.next_batch(None, 3).unwrap(); | |
assert_eq!(entries.len(), 2); | |
assert!(entries.contains_key(&1)); | |
assert!(entries.contains_key(&2)); | |
assert_eq!(batch.id, 1); | |
assert_eq!(batch.size, 2); | |
assert_eq!(state.next_id, 3); | |
assert_eq!(state.entries.len(), 0); | |
assert_eq!(state.next_batch_id, 2); | |
} | |
async fn test_queue_append() { | |
let queue = Queue::new(false); | |
let (entry, _guard) = default_entry(); | |
queue.append(entry); | |
} | |
async fn test_queue_next_batch_empty() { | |
let queue = Queue::new(false); | |
assert!(queue.next_batch(None, 1).await.is_none()); | |
assert!(queue.next_batch(Some(1), 1).await.is_none()); | |
} | |
async fn test_queue_next_batch_min_size() { | |
let queue = Queue::new(false); | |
let (entry1, _guard1) = default_entry(); | |
let (entry2, _guard2) = default_entry(); | |
queue.append(entry1); | |
queue.append(entry2); | |
let (entries, batch, _) = queue.next_batch(None, 2).await.unwrap(); | |
assert_eq!(entries.len(), 2); | |
assert!(entries.contains_key(&0)); | |
assert!(entries.contains_key(&1)); | |
assert!(entries.get(&0).unwrap().batch_time.is_some()); | |
assert!(entries.get(&1).unwrap().batch_time.is_some()); | |
assert_eq!(batch.id, 0); | |
assert_eq!(batch.size, 2); | |
let (entry3, _guard3) = default_entry(); | |
queue.append(entry3); | |
// Not enough requests pending | |
assert!(queue.next_batch(Some(2), 2).await.is_none()); | |
// Not enough token budget | |
assert!(queue.next_batch(Some(1), 0).await.is_none()); | |
// Ok | |
let (entries2, batch2, _) = queue.next_batch(Some(1), 2).await.unwrap(); | |
assert_eq!(entries2.len(), 1); | |
assert!(entries2.contains_key(&2)); | |
assert!(entries2.get(&2).unwrap().batch_time.is_some()); | |
assert_eq!(batch2.id, 1); | |
assert_eq!(batch2.size, 1); | |
} | |
async fn test_queue_next_batch_token_budget() { | |
let queue = Queue::new(false); | |
let (entry1, _guard1) = default_entry(); | |
let (entry2, _guard2) = default_entry(); | |
queue.append(entry1); | |
queue.append(entry2); | |
let (entries, batch, _) = queue.next_batch(None, 1).await.unwrap(); | |
assert_eq!(entries.len(), 1); | |
assert!(entries.contains_key(&0)); | |
assert_eq!(batch.id, 0); | |
assert_eq!(batch.size, 1); | |
let (entry3, _guard3) = default_entry(); | |
queue.append(entry3); | |
let (entries, batch, _) = queue.next_batch(None, 3).await.unwrap(); | |
assert_eq!(entries.len(), 2); | |
assert!(entries.contains_key(&1)); | |
assert!(entries.contains_key(&2)); | |
assert_eq!(batch.id, 1); | |
assert_eq!(batch.size, 2); | |
} | |
async fn test_queue_next_batch_dropped_receiver() { | |
let queue = Queue::new(false); | |
let (entry, _) = default_entry(); | |
queue.append(entry); | |
assert!(queue.next_batch(None, 1).await.is_none()); | |
} | |
} | |