Spaces:
Runtime error
Runtime error
File size: 32,750 Bytes
c7a96cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 |
use clap::Parser;
use serde::Deserialize;
use std::env;
use std::ffi::OsString;
use std::io::{BufRead, BufReader, Read};
use std::path::Path;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
use std::sync::Arc;
use std::sync::{mpsc, Mutex};
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
use subprocess::{ExitStatus, Popen, PopenConfig, PopenError, Redirection};
mod env_runtime;
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
/// The name of the model to load.
/// Can be a MODEL_ID as listed on <https://hf.co/models> like
/// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
/// Or it can be a local directory containing the necessary files
/// as saved by `save_pretrained(...)` methods of transformers
#[clap(default_value = "bigscience/bloom-560m", long, env)]
model_id: String,
/// The actual revision of the model if you're referring to a model
/// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
#[clap(long, env)]
revision: Option<String>,
/// Wether to shard or not the model across multiple GPUs
/// By default text-generation-inference will use all available GPUs to run
/// the model. Setting it to `false` deactivates `num_shard`.
#[clap(long, env)]
sharded: Option<bool>,
/// The number of shards to use if you don't want to use all GPUs on a given machine.
/// You can use `CUDA_VISIBLE_DEVICE=0,1 text-generation-launcher... --num_shard 2`
/// and `CUDA_VISIBLE_DEVICE=2,3 text-generation-launcher... --num_shard 2` to
/// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
#[clap(long, env)]
num_shard: Option<usize>,
/// Wether you want the model to be quantized or not. This will use bitsandbytes for
/// quantization on the fly.
#[clap(long, env)]
quantize: bool,
/// The maximum amount of concurrent requests for this particular deployment.
/// Having a low limit will refuse clients requests instead of having them
/// wait for too long and is usually good to handle backpressure correctly.
#[clap(default_value = "128", long, env)]
max_concurrent_requests: usize,
/// This is the maximum allowed value for clients to set `best_of`.
/// Best of makes `n` generations at the same time, and return the best
/// in terms of overall log probability over the entire generated sequence
#[clap(default_value = "2", long, env)]
max_best_of: usize,
/// This is the maximum allowed value for clients to set `stop_sequences`.
/// Stop sequences are used to allow the model to stop on more than just
/// the EOS token, and enable more complex "prompting" where users can preprompt
/// the model in a specific way and define their "own" stop token aligned with
/// their prompt.
#[clap(default_value = "4", long, env)]
max_stop_sequences: usize,
/// This is the maximum allowed input length (expressed in number of tokens)
/// for users. The larger this value, the longer prompt users can send which
/// can impact the overall memory required to handle the load.
/// Please note that some models have a finite range of sequence they can handle.
#[clap(default_value = "1000", long, env)]
max_input_length: usize,
/// This is the most important value to set as it defines the "memory budget"
/// of running clients requests.
/// Clients will send input sequences and ask to generate `max_new_tokens`
/// on top. with a value of `1512` users can send either a prompt of
/// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
/// `1511` max_new_tokens.
/// The larger this value, the larger amount each request will be in your RAM
/// and the less effective batching can be.
#[clap(default_value = "1512", long, env)]
max_total_tokens: usize,
/// The maximum allowed batch size during dynamic batching.
/// Using `max_batch_total_tokens` should be favored in general
/// as it's a finer way to control RAM usage.
#[clap(long, env)]
max_batch_size: Option<usize>,
/// This represents the ratio of waiting queries vs running queries where
/// you want to start considering pausing the running queries to include the waiting
/// ones into the same batch.
/// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
/// only 10 queries left in the current batch we check if we can fit those 12
/// waiting queries into the batching strategy, and if yes, then batching happens
/// delaying the 10 running queries by a `prefill` run.
///
/// This setting is only applied if there is room in the batch
/// as defined by `max_batch_total_tokens`.
#[clap(default_value = "1.2", long, env)]
waiting_served_ratio: f32,
/// **IMPORTANT** This is one critical control to allow maximum usage
/// of the available hardware.
///
/// This represents the total amount of potential tokens within a batch.
/// When using padding (not recommended) this would be equivalent of
/// `batch_size` * `max_total_tokens`.
///
/// However in the non-padded (flash attention) version this can be much finer.
///
/// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
/// or a single query of `1000` tokens.
///
/// So you don't have to control that finely
/// `max_batch_size` or `max_total_tokens`. In fact you could mostly relax them if you
/// want maximum flexibility. However, for your users if they are asking for the full amount of
/// total tokens, they are likely to wait for a very long time to get a spot
/// in the batch (since they are going to be alone) so setting `max_batch_size`
/// and `max_total_tokens` can still be useful to prevent those long waiting times.
///
/// Overall this number should be the largest possible amount that fits the
/// remaining memory (after the model is loaded). Since the actual memory overhead
/// depends on other parameters like if you're using quantization, flash attention
/// or the model implementation, text-generation-inference cannot infer this number
/// automatically.
#[clap(default_value = "32000", long, env)]
max_batch_total_tokens: u32,
/// This setting defines how many tokens can be passed before forcing the waiting
/// queries to be put on the batch (if the size of the batch allows for it).
/// New queries require 1 `prefill` forward, which is different from `decode`
/// and therefore you need to pause the running batch in order to run `prefill`
/// to create the correct values for the waiting queries to be able to join the batch.
///
/// With a value too small, queries will always "steal" the compute to run `prefill`
/// and running queries will be delayed by a lot.
///
/// With a value too big, waiting queries could wait for a very long time
/// before being allowed a slot in the running batch. If your server is busy
/// that means that requests that could run in ~2s on an empty server could
/// end up running in ~20s because the query had to wait for 18s.
///
/// This number is expressed in number of tokens to make it a bit more
/// "model" agnostic, but what should really matter is the overall latency
/// for end users.
#[clap(default_value = "20", long, env)]
max_waiting_tokens: usize,
#[clap(default_value = "3000", long, short, env)]
/// The port to listen on.
port: u16,
/// The name of the socket for gRPC communication between the webserver
/// and the shards.
#[clap(default_value = "/tmp/text-generation-server", long, env)]
shard_uds_path: String,
/// The address the master shard will listen on. (setting used by torch distributed)
#[clap(default_value = "localhost", long, env)]
master_addr: String,
/// The address the master port will listen on. (setting used by torch distributed)
#[clap(default_value = "29500", long, env)]
master_port: usize,
/// The location of the huggingface hub cache.
/// Used to override the location if you want to provide a mounted disk for instance
#[clap(long, env)]
huggingface_hub_cache: Option<String>,
/// The location of the huggingface hub cache.
/// Used to override the location if you want to provide a mounted disk for instance
#[clap(long, env)]
weights_cache_override: Option<String>,
/// For some models (like bloom), text-generation-inference implemented custom
/// cuda kernels to speed up inference. Those kernels were only tested on A100.
/// Use this flag to disable them if you're running on different hardware and
/// encounter issues.
#[clap(long, env)]
disable_custom_kernels: bool,
/// Outputs the logs in JSON format (useful for telemetry)
#[clap(long, env)]
json_output: bool,
#[clap(long, env)]
otlp_endpoint: Option<String>,
#[clap(long, env)]
cors_allow_origin: Vec<String>,
#[clap(long, env)]
watermark_gamma: Option<f32>,
#[clap(long, env)]
watermark_delta: Option<f32>,
/// Display a lot of information about your runtime environment
#[clap(long, short, action)]
env: bool,
}
#[derive(Debug)]
enum ShardStatus {
Ready,
Failed((usize, String)),
}
#[allow(clippy::too_many_arguments)]
fn shard_manager(
model_id: String,
revision: Option<String>,
quantize: bool,
uds_path: String,
rank: usize,
world_size: usize,
master_addr: String,
master_port: usize,
huggingface_hub_cache: Option<String>,
weights_cache_override: Option<String>,
disable_custom_kernels: bool,
watermark_gamma: Option<f32>,
watermark_delta: Option<f32>,
otlp_endpoint: Option<String>,
status_sender: mpsc::Sender<ShardStatus>,
shutdown: Arc<Mutex<bool>>,
_shutdown_sender: mpsc::Sender<()>,
) {
// Get UDS path
let uds_string = format!("{uds_path}-{rank}");
let uds = Path::new(&uds_string);
// Clean previous runs
fs::remove_file(uds).unwrap_or_default();
// Process args
let mut shard_argv = vec![
"text-generation-server".to_string(),
"serve".to_string(),
model_id,
"--uds-path".to_string(),
uds_path,
"--logger-level".to_string(),
"INFO".to_string(),
"--json-output".to_string(),
];
// Activate tensor parallelism
if world_size > 1 {
shard_argv.push("--sharded".to_string());
}
if quantize {
shard_argv.push("--quantize".to_string())
}
// Model optional revision
if let Some(revision) = revision {
shard_argv.push("--revision".to_string());
shard_argv.push(revision)
}
// OpenTelemetry
if let Some(otlp_endpoint) = otlp_endpoint {
shard_argv.push("--otlp-endpoint".to_string());
shard_argv.push(otlp_endpoint);
}
// Copy current process env
let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();
// Torch Distributed Env vars
env.push(("RANK".into(), rank.to_string().into()));
env.push(("WORLD_SIZE".into(), world_size.to_string().into()));
env.push(("MASTER_ADDR".into(), master_addr.into()));
env.push(("MASTER_PORT".into(), master_port.to_string().into()));
env.push(("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()));
// Safetensors load fast
env.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
// Enable hf transfer for insane download speeds
let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
env.push((
"HF_HUB_ENABLE_HF_TRANSFER".into(),
enable_hf_transfer.into(),
));
// Parse Inference API token
if let Ok(api_token) = env::var("HF_API_TOKEN") {
env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
};
// If huggingface_hub_cache is some, pass it to the shard
// Useful when running inside a docker container
if let Some(huggingface_hub_cache) = huggingface_hub_cache {
env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
};
// If weights_cache_override is some, pass it to the shard
// Useful when running inside a HuggingFace Inference Endpoint
if let Some(weights_cache_override) = weights_cache_override {
env.push((
"WEIGHTS_CACHE_OVERRIDE".into(),
weights_cache_override.into(),
));
};
// If disable_custom_kernels is true, pass it to the shard as an env var
if disable_custom_kernels {
env.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
}
// Watermark Gamma
if let Some(watermark_gamma) = watermark_gamma {
env.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
}
// Watermark Delta
if let Some(watermark_delta) = watermark_delta {
env.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
}
// Start process
tracing::info!("Starting shard {rank}");
let mut p = match Popen::create(
&shard_argv,
PopenConfig {
stdout: Redirection::Pipe,
stderr: Redirection::Pipe,
// Needed for the shutdown procedure
setpgid: true,
// NCCL env vars
env: Some(env),
..Default::default()
},
) {
Ok(p) => p,
Err(err) => {
if let PopenError::IoError(ref err) = err {
if err.kind() == io::ErrorKind::NotFound {
tracing::error!("text-generation-server not found in PATH");
tracing::error!("Please install it with `make install-server`")
}
}
status_sender
.send(ShardStatus::Failed((rank, err.to_string())))
.unwrap();
return;
}
};
// Redirect STDOUT to the console
let shard_stdout = p.stdout.take().unwrap();
thread::spawn(move || {
// Enter shard-manager tracing span
let stdout = BufReader::new(shard_stdout);
let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();
for line in stdout.lines() {
// Parse loguru logs
if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
log.trace();
}
}
});
let mut ready = false;
let start_time = Instant::now();
let mut wait_time = Instant::now();
loop {
// Process exited
if p.poll().is_some() {
let mut err = String::new();
p.stderr.take().unwrap().read_to_string(&mut err).unwrap();
status_sender
.send(ShardStatus::Failed((rank, err)))
.unwrap();
return;
}
// We received a shutdown signal
if *shutdown.lock().unwrap() {
p.terminate().unwrap();
let _ = p.wait_timeout(Duration::from_secs(90));
tracing::info!("Shard {rank} terminated");
return;
}
// Shard is ready
if uds.exists() && !ready {
tracing::info!("Shard {rank} ready in {:?}", start_time.elapsed());
status_sender.send(ShardStatus::Ready).unwrap();
ready = true;
} else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
tracing::info!("Waiting for shard {rank} to be ready...");
wait_time = Instant::now();
}
sleep(Duration::from_millis(100));
}
}
fn shutdown_shards(shutdown: Arc<Mutex<bool>>, shutdown_receiver: &mpsc::Receiver<()>) {
tracing::info!("Shutting down shards");
// Update shutdown value to true
// This will be picked up by the shard manager
{
let mut shutdown = shutdown.lock().unwrap();
*shutdown = true;
}
// Wait for shards to shutdown
// This will block till all shutdown_sender are dropped
let _ = shutdown_receiver.recv();
}
fn num_cuda_devices() -> Option<usize> {
if let Ok(cuda_visible_devices) = env::var("CUDA_VISIBLE_DEVICES") {
let n_devices = cuda_visible_devices.split(',').count();
return Some(n_devices);
}
None
}
#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
Trace,
Debug,
Info,
Success,
Warning,
Error,
Critical,
}
#[derive(Deserialize)]
struct PythonLogLevel {
name: PythonLogLevelEnum,
}
#[derive(Deserialize)]
struct PythonLogRecord {
level: PythonLogLevel,
}
#[derive(Deserialize)]
struct PythonLogMessage {
text: String,
record: PythonLogRecord,
}
impl PythonLogMessage {
fn trace(&self) {
match self.record.level.name {
PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
}
}
}
fn find_num_shards(sharded: Option<bool>, num_shard: Option<usize>) -> usize {
// get the number of shards given `sharded` and `num_shard`
let num_shard = match (sharded, num_shard) {
(Some(true), None) => {
// try to default to the number of available GPUs
tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES");
let n_devices =
num_cuda_devices().expect("--num-shard and CUDA_VISIBLE_DEVICES are not set");
if n_devices <= 1 {
panic!("`sharded` is true but only found {n_devices} CUDA devices");
}
n_devices
}
(Some(true), Some(num_shard)) => {
// we can't have only one shard while sharded
if num_shard <= 1 {
panic!("`sharded` is true but `num_shard` <= 1");
}
num_shard
}
(Some(false), Some(num_shard)) => num_shard,
(Some(false), None) => 1,
(None, None) => num_cuda_devices().unwrap_or(1),
(None, Some(num_shard)) => num_shard,
};
if num_shard < 1 {
panic!("`num_shard` cannot be < 1");
}
num_shard
}
#[derive(Debug)]
enum LauncherError {
DownloadError,
ShardCannotStart,
ShardDisconnected,
ShardFailed,
WebserverFailed,
WebserverCannotStart,
}
fn download_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
let mut download_argv = vec![
"text-generation-server".to_string(),
"download-weights".to_string(),
args.model_id.to_string(),
"--extension".to_string(),
".safetensors".to_string(),
"--logger-level".to_string(),
"INFO".to_string(),
"--json-output".to_string(),
];
// Model optional revision
if let Some(revision) = &args.revision {
download_argv.push("--revision".to_string());
download_argv.push(revision.to_string())
}
// Copy current process env
let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();
// If huggingface_hub_cache is set, pass it to the shard
// Useful when running inside a docker container
if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
};
// Enable hf transfer for insane download speeds
let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
env.push((
"HF_HUB_ENABLE_HF_TRANSFER".into(),
enable_hf_transfer.into(),
));
// Parse Inference API token
if let Ok(api_token) = env::var("HF_API_TOKEN") {
env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
};
// Start process
tracing::info!("Starting download process.");
let mut download_process = match Popen::create(
&download_argv,
PopenConfig {
stdout: Redirection::Pipe,
stderr: Redirection::Pipe,
// Needed for the shutdown procedure
setpgid: true,
env: Some(env),
..Default::default()
},
) {
Ok(p) => p,
Err(err) => {
if let PopenError::IoError(ref err) = err {
if err.kind() == io::ErrorKind::NotFound {
tracing::error!("text-generation-server not found in PATH");
tracing::error!("Please install it with `make install-server`")
}
}
return Err(LauncherError::DownloadError);
}
};
// Redirect STDOUT to the console
let download_stdout = download_process.stdout.take().unwrap();
thread::spawn(move || {
// Enter download tracing span
let stdout = BufReader::new(download_stdout);
let _span = tracing::span!(tracing::Level::INFO, "download").entered();
for line in stdout.lines() {
// Parse loguru logs
if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
log.trace();
}
}
});
loop {
if let Some(status) = download_process.poll() {
match status {
ExitStatus::Exited(exit_code) => {
if exit_code == 0 {
tracing::info!("Successfully downloaded weights.");
break;
} else {
let mut err = String::new();
download_process
.stderr
.take()
.unwrap()
.read_to_string(&mut err)
.unwrap();
tracing::error!("Download encountered an error: {err}");
return Err(LauncherError::DownloadError);
}
}
_ => {
tracing::error!("Download process exited with an unknown status.");
return Err(LauncherError::DownloadError);
}
}
}
if !running.load(Ordering::SeqCst) {
download_process.terminate().unwrap();
tracing::info!("Waiting for download process to gracefully shutdown");
download_process
.wait_timeout(Duration::from_secs(90))
.unwrap();
tracing::info!("Download process terminated");
return Ok(());
}
sleep(Duration::from_millis(100));
}
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn spawn_shards(
num_shard: usize,
args: &Args,
shutdown: Arc<Mutex<bool>>,
shutdown_receiver: &mpsc::Receiver<()>,
shutdown_sender: mpsc::Sender<()>,
status_receiver: &mpsc::Receiver<ShardStatus>,
status_sender: mpsc::Sender<ShardStatus>,
running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
// Start shard processes
for rank in 0..num_shard {
let model_id = args.model_id.clone();
let revision = args.revision.clone();
let uds_path = args.shard_uds_path.clone();
let master_addr = args.master_addr.clone();
let huggingface_hub_cache = args.huggingface_hub_cache.clone();
let weights_cache_override = args.weights_cache_override.clone();
let status_sender = status_sender.clone();
let shutdown = shutdown.clone();
let shutdown_sender = shutdown_sender.clone();
let otlp_endpoint = args.otlp_endpoint.clone();
let quantize = args.quantize;
let master_port = args.master_port;
let disable_custom_kernels = args.disable_custom_kernels;
let watermark_gamma = args.watermark_gamma;
let watermark_delta = args.watermark_delta;
thread::spawn(move || {
shard_manager(
model_id,
revision,
quantize,
uds_path,
rank,
num_shard,
master_addr,
master_port,
huggingface_hub_cache,
weights_cache_override,
disable_custom_kernels,
watermark_gamma,
watermark_delta,
otlp_endpoint,
status_sender,
shutdown,
shutdown_sender,
)
});
}
drop(shutdown_sender);
// Wait for shard to start
let mut shard_ready = 0;
while running.load(Ordering::SeqCst) {
match status_receiver.try_recv() {
Ok(ShardStatus::Ready) => {
shard_ready += 1;
if shard_ready == num_shard {
break;
}
}
Err(TryRecvError::Empty) => {
sleep(Duration::from_millis(100));
}
Ok(ShardStatus::Failed((rank, err))) => {
tracing::error!("Shard {} failed to start:\n{}", rank, err);
shutdown_shards(shutdown, shutdown_receiver);
return Err(LauncherError::ShardCannotStart);
}
Err(TryRecvError::Disconnected) => {
tracing::error!("Shard status channel disconnected");
shutdown_shards(shutdown, shutdown_receiver);
return Err(LauncherError::ShardDisconnected);
}
}
}
Ok(())
}
fn spawn_webserver(
args: Args,
shutdown: Arc<Mutex<bool>>,
shutdown_receiver: &mpsc::Receiver<()>,
) -> Result<Popen, LauncherError> {
// All shard started
// Start webserver
tracing::info!("Starting Webserver");
let mut argv = vec![
"text-generation-router".to_string(),
"--max-concurrent-requests".to_string(),
args.max_concurrent_requests.to_string(),
"--max-best-of".to_string(),
args.max_best_of.to_string(),
"--max-stop-sequences".to_string(),
args.max_stop_sequences.to_string(),
"--max-input-length".to_string(),
args.max_input_length.to_string(),
"--max-total-tokens".to_string(),
args.max_total_tokens.to_string(),
"--waiting-served-ratio".to_string(),
args.waiting_served_ratio.to_string(),
"--max-waiting-tokens".to_string(),
args.max_waiting_tokens.to_string(),
"--port".to_string(),
args.port.to_string(),
"--master-shard-uds-path".to_string(),
format!("{}-0", args.shard_uds_path),
"--tokenizer-name".to_string(),
args.model_id,
];
// Deprecate max_batch_size
if let Some(max_batch_size) = args.max_batch_size {
argv.push("--max-batch-size".to_string());
argv.push(max_batch_size.to_string())
} else {
argv.push("--max-batch-total-tokens".to_string());
argv.push(args.max_batch_total_tokens.to_string())
}
// Model optional revision
if let Some(ref revision) = args.revision {
argv.push("--revision".to_string());
argv.push(revision.to_string())
}
if args.json_output {
argv.push("--json-output".to_string());
}
// OpenTelemetry
if let Some(otlp_endpoint) = args.otlp_endpoint {
argv.push("--otlp-endpoint".to_string());
argv.push(otlp_endpoint);
}
// CORS origins
for origin in args.cors_allow_origin.into_iter() {
argv.push("--cors-allow-origin".to_string());
argv.push(origin);
}
// Copy current process env
let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();
// Parse Inference API token
if let Ok(api_token) = env::var("HF_API_TOKEN") {
env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
};
let mut webserver = match Popen::create(
&argv,
PopenConfig {
stdout: Redirection::Pipe,
stderr: Redirection::Pipe,
// Needed for the shutdown procedure
setpgid: true,
env: Some(env),
..Default::default()
},
) {
Ok(p) => p,
Err(err) => {
tracing::error!("Failed to start webserver: {}", err);
if let PopenError::IoError(err) = err {
if err.kind() == io::ErrorKind::NotFound {
tracing::error!("text-generation-router not found in PATH");
tracing::error!("Please install it with `make install-router`")
}
} else {
tracing::error!("{}", err);
}
shutdown_shards(shutdown, shutdown_receiver);
return Err(LauncherError::WebserverCannotStart);
}
};
// Redirect STDOUT and STDERR to the console
let webserver_stdout = webserver.stdout.take().unwrap();
let webserver_stderr = webserver.stderr.take().unwrap();
thread::spawn(move || {
let stdout = BufReader::new(webserver_stdout);
let stderr = BufReader::new(webserver_stderr);
for line in stdout.lines() {
println!("{}", line.unwrap());
}
for line in stderr.lines() {
println!("{}", line.unwrap());
}
});
Ok(webserver)
}
fn main() -> Result<(), LauncherError> {
// Pattern match configuration
let args = Args::parse();
if args.json_output {
tracing_subscriber::fmt().json().init();
} else {
tracing_subscriber::fmt().compact().init();
}
if args.env {
let env_runtime = env_runtime::Env::new();
tracing::info!("{}", env_runtime);
}
tracing::info!("{:?}", args);
let num_shard = find_num_shards(args.sharded, args.num_shard);
if num_shard > 1 {
tracing::info!("Sharding model on {num_shard} processes");
}
// Signal handler
let running = Arc::new(AtomicBool::new(true));
let r = running.clone();
ctrlc::set_handler(move || {
r.store(false, Ordering::SeqCst);
})
.expect("Error setting Ctrl-C handler");
// Check if model_id is a local model
let local_path = Path::new(&args.model_id);
let is_local_model = local_path.exists() && local_path.is_dir();
// Download weights for sharded models
if !is_local_model && args.weights_cache_override.is_none() && num_shard > 1 {
download_model(&args, running.clone())?;
}
// Shared shutdown bool
let shutdown = Arc::new(Mutex::new(false));
// Shared shutdown channel
// When shutting down, the main thread will wait for all senders to be dropped
let (shutdown_sender, shutdown_receiver) = mpsc::channel();
// Shared channel to track shard status
let (status_sender, status_receiver) = mpsc::channel();
spawn_shards(
num_shard,
&args,
shutdown.clone(),
&shutdown_receiver,
shutdown_sender,
&status_receiver,
status_sender,
running.clone(),
)?;
// We might have received a termination signal
if !running.load(Ordering::SeqCst) {
shutdown_shards(shutdown, &shutdown_receiver);
return Ok(());
}
let mut webserver = spawn_webserver(args, shutdown.clone(), &shutdown_receiver)?;
// Default exit code
let mut exit_code = Ok(());
while running.load(Ordering::SeqCst) {
if let Ok(ShardStatus::Failed((rank, err))) = status_receiver.try_recv() {
tracing::error!("Shard {rank} failed:\n{err}");
exit_code = Err(LauncherError::ShardFailed);
break;
};
match webserver.poll() {
Some(_) => {
tracing::error!("Webserver Crashed");
shutdown_shards(shutdown, &shutdown_receiver);
return Err(LauncherError::WebserverFailed);
}
None => {
sleep(Duration::from_millis(100));
}
};
}
// Graceful termination
webserver.terminate().unwrap();
tracing::info!("Waiting for webserver to gracefully shutdown");
webserver.wait_timeout(Duration::from_secs(90)).unwrap();
tracing::info!("Webserver terminated");
shutdown_shards(shutdown, &shutdown_receiver);
exit_code
}
|