File size: 32,750 Bytes
c7a96cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
use clap::Parser;
use serde::Deserialize;
use std::env;
use std::ffi::OsString;
use std::io::{BufRead, BufReader, Read};
use std::path::Path;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
use std::sync::Arc;
use std::sync::{mpsc, Mutex};
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
use subprocess::{ExitStatus, Popen, PopenConfig, PopenError, Redirection};

mod env_runtime;

/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
    model_id: String,

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
    #[clap(long, env)]
    revision: Option<String>,

    /// Wether to shard or not the model across multiple GPUs
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
    #[clap(long, env)]
    sharded: Option<bool>,

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
    /// You can use `CUDA_VISIBLE_DEVICE=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICE=2,3 text-generation-launcher... --num_shard 2` to
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
    #[clap(long, env)]
    num_shard: Option<usize>,

    /// Wether you want the model to be quantized or not. This will use bitsandbytes for
    /// quantization on the fly.
    #[clap(long, env)]
    quantize: bool,

    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,

    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
    #[clap(default_value = "1000", long, env)]
    max_input_length: usize,

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
    #[clap(default_value = "1512", long, env)]
    max_total_tokens: usize,

    /// The maximum allowed batch size during dynamic batching.
    /// Using `max_batch_total_tokens` should be favored in general
    /// as it's a finer way to control RAM usage.
    #[clap(long, env)]
    max_batch_size: Option<usize>,

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,

    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// So you don't have to control that finely
    /// `max_batch_size` or `max_total_tokens`. In fact you could mostly relax them if you
    /// want maximum flexibility. However, for your users if they are asking for the full amount of
    /// total tokens, they are likely to wait for a very long time to get a spot
    /// in the batch (since they are going to be alone) so setting `max_batch_size`
    /// and `max_total_tokens` can still be useful to prevent those long waiting times.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
    #[clap(default_value = "32000", long, env)]
    max_batch_total_tokens: u32,

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
    #[clap(default_value = "3000", long, short, env)]

    /// The port to listen on.
    port: u16,

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,

    /// The address the master shard will listen on. (setting used by torch distributed)
    #[clap(default_value = "localhost", long, env)]
    master_addr: String,

    /// The address the master port will listen on. (setting used by torch distributed)
    #[clap(default_value = "29500", long, env)]
    master_port: usize,

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
    #[clap(long, env)]
    huggingface_hub_cache: Option<String>,

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
    #[clap(long, env)]
    weights_cache_override: Option<String>,

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
    #[clap(long, env)]
    disable_custom_kernels: bool,

    /// Outputs the logs in JSON format (useful for telemetry)
    #[clap(long, env)]
    json_output: bool,

    #[clap(long, env)]
    otlp_endpoint: Option<String>,

    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,

    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
}

#[derive(Debug)]
enum ShardStatus {
    Ready,
    Failed((usize, String)),
}

#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
    quantize: bool,
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
    shutdown: Arc<Mutex<bool>>,
    _shutdown_sender: mpsc::Sender<()>,
) {
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
    fs::remove_file(uds).unwrap_or_default();

    // Process args
    let mut shard_argv = vec![
        "text-generation-server".to_string(),
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

    // Activate tensor parallelism
    if world_size > 1 {
        shard_argv.push("--sharded".to_string());
    }

    if quantize {
        shard_argv.push("--quantize".to_string())
    }

    // Model optional revision
    if let Some(revision) = revision {
        shard_argv.push("--revision".to_string());
        shard_argv.push(revision)
    }

    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
        shard_argv.push("--otlp-endpoint".to_string());
        shard_argv.push(otlp_endpoint);
    }

    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

    // Torch Distributed Env vars
    env.push(("RANK".into(), rank.to_string().into()));
    env.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    env.push(("MASTER_ADDR".into(), master_addr.into()));
    env.push(("MASTER_PORT".into(), master_port.to_string().into()));
    env.push(("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()));

    // Safetensors load fast
    env.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));

    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };

    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
        env.push((
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
        env.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
        env.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
        env.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
    }

    // Start process
    tracing::info!("Starting shard {rank}");
    let mut p = match Popen::create(
        &shard_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            // NCCL env vars
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
                }
            }
            status_sender
                .send(ShardStatus::Failed((rank, err.to_string())))
                .unwrap();
            return;
        }
    };

    // Redirect STDOUT to the console
    let shard_stdout = p.stdout.take().unwrap();

    thread::spawn(move || {
        // Enter shard-manager tracing span
        let stdout = BufReader::new(shard_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
            }
        }
    });

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
        if p.poll().is_some() {
            let mut err = String::new();
            p.stderr.take().unwrap().read_to_string(&mut err).unwrap();
            status_sender
                .send(ShardStatus::Failed((rank, err)))
                .unwrap();
            return;
        }

        // We received a shutdown signal
        if *shutdown.lock().unwrap() {
            p.terminate().unwrap();
            let _ = p.wait_timeout(Duration::from_secs(90));
            tracing::info!("Shard {rank} terminated");
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
            tracing::info!("Shard {rank} ready in {:?}", start_time.elapsed());
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
            tracing::info!("Waiting for shard {rank} to be ready...");
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

fn shutdown_shards(shutdown: Arc<Mutex<bool>>, shutdown_receiver: &mpsc::Receiver<()>) {
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
    {
        let mut shutdown = shutdown.lock().unwrap();
        *shutdown = true;
    }

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
    if let Ok(cuda_visible_devices) = env::var("CUDA_VISIBLE_DEVICES") {
        let n_devices = cuda_visible_devices.split(',').count();
        return Some(n_devices);
    }
    None
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

fn find_num_shards(sharded: Option<bool>, num_shard: Option<usize>) -> usize {
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES");
            let n_devices =
                num_cuda_devices().expect("--num-shard and CUDA_VISIBLE_DEVICES are not set");
            if n_devices <= 1 {
                panic!("`sharded` is true but only found {n_devices} CUDA devices");
            }
            n_devices
        }
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
                panic!("`sharded` is true but `num_shard` <= 1");
            }
            num_shard
        }
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
    };
    if num_shard < 1 {
        panic!("`num_shard` cannot be < 1");
    }
    num_shard
}

#[derive(Debug)]
enum LauncherError {
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}

fn download_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
    let mut download_argv = vec![
        "text-generation-server".to_string(),
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

    // Model optional revision
    if let Some(revision) = &args.revision {
        download_argv.push("--revision".to_string());
        download_argv.push(revision.to_string())
    }

    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

    // If huggingface_hub_cache is set, pass it to the shard
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
        env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
    };

    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
    env.push((
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };

    // Start process
    tracing::info!("Starting download process.");
    let mut download_process = match Popen::create(
        &download_argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            if let PopenError::IoError(ref err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-server not found in PATH");
                    tracing::error!("Please install it with `make install-server`")
                }
            }
            return Err(LauncherError::DownloadError);
        }
    };

    // Redirect STDOUT to the console
    let download_stdout = download_process.stdout.take().unwrap();
    thread::spawn(move || {
        // Enter download tracing span
        let stdout = BufReader::new(download_stdout);
        let _span = tracing::span!(tracing::Level::INFO, "download").entered();
        for line in stdout.lines() {
            // Parse loguru logs
            if let Ok(log) = serde_json::from_str::<PythonLogMessage>(&line.unwrap()) {
                log.trace();
            }
        }
    });

    loop {
        if let Some(status) = download_process.poll() {
            match status {
                ExitStatus::Exited(exit_code) => {
                    if exit_code == 0 {
                        tracing::info!("Successfully downloaded weights.");
                        break;
                    } else {
                        let mut err = String::new();
                        download_process
                            .stderr
                            .take()
                            .unwrap()
                            .read_to_string(&mut err)
                            .unwrap();
                        tracing::error!("Download encountered an error: {err}");
                        return Err(LauncherError::DownloadError);
                    }
                }
                _ => {
                    tracing::error!("Download process exited with an unknown status.");
                    return Err(LauncherError::DownloadError);
                }
            }
        }
        if !running.load(Ordering::SeqCst) {
            download_process.terminate().unwrap();
            tracing::info!("Waiting for download process to gracefully shutdown");
            download_process
                .wait_timeout(Duration::from_secs(90))
                .unwrap();
            tracing::info!("Download process terminated");
            return Ok(());
        }
        sleep(Duration::from_millis(100));
    }
    Ok(())
}

#[allow(clippy::too_many_arguments)]
fn spawn_shards(
    num_shard: usize,
    args: &Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
    // Start shard processes
    for rank in 0..num_shard {
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
        let otlp_endpoint = args.otlp_endpoint.clone();
        let quantize = args.quantize;
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
        thread::spawn(move || {
            shard_manager(
                model_id,
                revision,
                quantize,
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
                huggingface_hub_cache,
                weights_cache_override,
                disable_custom_kernels,
                watermark_gamma,
                watermark_delta,
                otlp_endpoint,
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
            Ok(ShardStatus::Failed((rank, err))) => {
                tracing::error!("Shard {} failed to start:\n{}", rank, err);
                shutdown_shards(shutdown, shutdown_receiver);
                return Err(LauncherError::ShardCannotStart);
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
                shutdown_shards(shutdown, shutdown_receiver);
                return Err(LauncherError::ShardDisconnected);
            }
        }
    }
    Ok(())
}

fn spawn_webserver(
    args: Args,
    shutdown: Arc<Mutex<bool>>,
    shutdown_receiver: &mpsc::Receiver<()>,
) -> Result<Popen, LauncherError> {
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
    let mut argv = vec![
        "text-generation-router".to_string(),
        "--max-concurrent-requests".to_string(),
        args.max_concurrent_requests.to_string(),
        "--max-best-of".to_string(),
        args.max_best_of.to_string(),
        "--max-stop-sequences".to_string(),
        args.max_stop_sequences.to_string(),
        "--max-input-length".to_string(),
        args.max_input_length.to_string(),
        "--max-total-tokens".to_string(),
        args.max_total_tokens.to_string(),
        "--waiting-served-ratio".to_string(),
        args.waiting_served_ratio.to_string(),
        "--max-waiting-tokens".to_string(),
        args.max_waiting_tokens.to_string(),
        "--port".to_string(),
        args.port.to_string(),
        "--master-shard-uds-path".to_string(),
        format!("{}-0", args.shard_uds_path),
        "--tokenizer-name".to_string(),
        args.model_id,
    ];

    // Deprecate max_batch_size
    if let Some(max_batch_size) = args.max_batch_size {
        argv.push("--max-batch-size".to_string());
        argv.push(max_batch_size.to_string())
    } else {
        argv.push("--max-batch-total-tokens".to_string());
        argv.push(args.max_batch_total_tokens.to_string())
    }

    // Model optional revision
    if let Some(ref revision) = args.revision {
        argv.push("--revision".to_string());
        argv.push(revision.to_string())
    }

    if args.json_output {
        argv.push("--json-output".to_string());
    }

    // OpenTelemetry
    if let Some(otlp_endpoint) = args.otlp_endpoint {
        argv.push("--otlp-endpoint".to_string());
        argv.push(otlp_endpoint);
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
        argv.push("--cors-allow-origin".to_string());
        argv.push(origin);
    }

    // Copy current process env
    let mut env: Vec<(OsString, OsString)> = env::vars_os().collect();

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
        env.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
    };

    let mut webserver = match Popen::create(
        &argv,
        PopenConfig {
            stdout: Redirection::Pipe,
            stderr: Redirection::Pipe,
            // Needed for the shutdown procedure
            setpgid: true,
            env: Some(env),
            ..Default::default()
        },
    ) {
        Ok(p) => p,
        Err(err) => {
            tracing::error!("Failed to start webserver: {}", err);
            if let PopenError::IoError(err) = err {
                if err.kind() == io::ErrorKind::NotFound {
                    tracing::error!("text-generation-router not found in PATH");
                    tracing::error!("Please install it with `make install-router`")
                }
            } else {
                tracing::error!("{}", err);
            }

            shutdown_shards(shutdown, shutdown_receiver);
            return Err(LauncherError::WebserverCannotStart);
        }
    };

    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();

    thread::spawn(move || {
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
        for line in stdout.lines() {
            println!("{}", line.unwrap());
        }
        for line in stderr.lines() {
            println!("{}", line.unwrap());
        }
    });
    Ok(webserver)
}

fn main() -> Result<(), LauncherError> {
    // Pattern match configuration
    let args = Args::parse();

    if args.json_output {
        tracing_subscriber::fmt().json().init();
    } else {
        tracing_subscriber::fmt().compact().init();
    }

    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

    tracing::info!("{:?}", args);

    let num_shard = find_num_shards(args.sharded, args.num_shard);
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
    }

    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");

    // Check if model_id is a local model
    let local_path = Path::new(&args.model_id);
    let is_local_model = local_path.exists() && local_path.is_dir();

    // Download weights for sharded models
    if !is_local_model && args.weights_cache_override.is_none() && num_shard > 1 {
        download_model(&args, running.clone())?;
    }

    // Shared shutdown bool
    let shutdown = Arc::new(Mutex::new(false));
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();

    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();

    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;

    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }

    let mut webserver = spawn_webserver(args, shutdown.clone(), &shutdown_receiver)?;

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
        if let Ok(ShardStatus::Failed((rank, err))) = status_receiver.try_recv() {
            tracing::error!("Shard {rank} failed:\n{err}");
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

        match webserver.poll() {
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
    }

    // Graceful termination
    webserver.terminate().unwrap();
    tracing::info!("Waiting for webserver to gracefully shutdown");
    webserver.wait_timeout(Duration::from_secs(90)).unwrap();
    tracing::info!("Webserver terminated");
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
}