Spaces:
Runtime error
Runtime error
File size: 11,071 Bytes
33d5fe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import argparse
import torch
from torch import nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torchvision import datasets
from torchvision import transforms as pth_transforms
from torchvision import models as torchvision_models
import utils
import vision_transformer as vits
def extract_feature_pipeline(args):
# ============ preparing data ... ============
transform = pth_transforms.Compose([
pth_transforms.Resize(256, interpolation=3),
pth_transforms.CenterCrop(224),
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
dataset_train = ReturnIndexDataset(os.path.join(args.data_path, "train"), transform=transform)
dataset_val = ReturnIndexDataset(os.path.join(args.data_path, "val"), transform=transform)
sampler = torch.utils.data.DistributedSampler(dataset_train, shuffle=False)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler,
batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val,
batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
)
print(f"Data loaded with {len(dataset_train)} train and {len(dataset_val)} val imgs.")
# ============ building network ... ============
if "vit" in args.arch:
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
elif "xcit" in args.arch:
model = torch.hub.load('facebookresearch/xcit', args.arch, num_classes=0)
elif args.arch in torchvision_models.__dict__.keys():
model = torchvision_models.__dict__[args.arch](num_classes=0)
else:
print(f"Architecture {args.arch} non supported")
sys.exit(1)
model.cuda()
utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
model.eval()
# ============ extract features ... ============
print("Extracting features for train set...")
train_features = extract_features(model, data_loader_train, args.use_cuda)
print("Extracting features for val set...")
test_features = extract_features(model, data_loader_val, args.use_cuda)
if utils.get_rank() == 0:
train_features = nn.functional.normalize(train_features, dim=1, p=2)
test_features = nn.functional.normalize(test_features, dim=1, p=2)
train_labels = torch.tensor([s[-1] for s in dataset_train.samples]).long()
test_labels = torch.tensor([s[-1] for s in dataset_val.samples]).long()
# save features and labels
if args.dump_features and dist.get_rank() == 0:
torch.save(train_features.cpu(), os.path.join(args.dump_features, "trainfeat.pth"))
torch.save(test_features.cpu(), os.path.join(args.dump_features, "testfeat.pth"))
torch.save(train_labels.cpu(), os.path.join(args.dump_features, "trainlabels.pth"))
torch.save(test_labels.cpu(), os.path.join(args.dump_features, "testlabels.pth"))
return train_features, test_features, train_labels, test_labels
@torch.no_grad()
def extract_features(model, data_loader, use_cuda=True, multiscale=False):
metric_logger = utils.MetricLogger(delimiter=" ")
features = None
for samples, index in metric_logger.log_every(data_loader, 10):
samples = samples.cuda(non_blocking=True)
index = index.cuda(non_blocking=True)
if multiscale:
feats = utils.multi_scale(samples, model)
else:
feats = model(samples).clone()
# init storage feature matrix
if dist.get_rank() == 0 and features is None:
features = torch.zeros(len(data_loader.dataset), feats.shape[-1])
if use_cuda:
features = features.cuda(non_blocking=True)
print(f"Storing features into tensor of shape {features.shape}")
# get indexes from all processes
y_all = torch.empty(dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device)
y_l = list(y_all.unbind(0))
y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True)
y_all_reduce.wait()
index_all = torch.cat(y_l)
# share features between processes
feats_all = torch.empty(
dist.get_world_size(),
feats.size(0),
feats.size(1),
dtype=feats.dtype,
device=feats.device,
)
output_l = list(feats_all.unbind(0))
output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True)
output_all_reduce.wait()
# update storage feature matrix
if dist.get_rank() == 0:
if use_cuda:
features.index_copy_(0, index_all, torch.cat(output_l))
else:
features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu())
return features
@torch.no_grad()
def knn_classifier(train_features, train_labels, test_features, test_labels, k, T, num_classes=1000):
top1, top5, total = 0.0, 0.0, 0
train_features = train_features.t()
num_test_images, num_chunks = test_labels.shape[0], 100
imgs_per_chunk = num_test_images // num_chunks
retrieval_one_hot = torch.zeros(k, num_classes).cuda()
for idx in range(0, num_test_images, imgs_per_chunk):
# get the features for test images
features = test_features[
idx : min((idx + imgs_per_chunk), num_test_images), :
]
targets = test_labels[idx : min((idx + imgs_per_chunk), num_test_images)]
batch_size = targets.shape[0]
# calculate the dot product and compute top-k neighbors
similarity = torch.mm(features, train_features)
distances, indices = similarity.topk(k, largest=True, sorted=True)
candidates = train_labels.view(1, -1).expand(batch_size, -1)
retrieved_neighbors = torch.gather(candidates, 1, indices)
retrieval_one_hot.resize_(batch_size * k, num_classes).zero_()
retrieval_one_hot.scatter_(1, retrieved_neighbors.view(-1, 1), 1)
distances_transform = distances.clone().div_(T).exp_()
probs = torch.sum(
torch.mul(
retrieval_one_hot.view(batch_size, -1, num_classes),
distances_transform.view(batch_size, -1, 1),
),
1,
)
_, predictions = probs.sort(1, True)
# find the predictions that match the target
correct = predictions.eq(targets.data.view(-1, 1))
top1 = top1 + correct.narrow(1, 0, 1).sum().item()
top5 = top5 + correct.narrow(1, 0, min(5, k)).sum().item() # top5 does not make sense if k < 5
total += targets.size(0)
top1 = top1 * 100.0 / total
top5 = top5 * 100.0 / total
return top1, top5
class ReturnIndexDataset(datasets.ImageFolder):
def __getitem__(self, idx):
img, lab = super(ReturnIndexDataset, self).__getitem__(idx)
return img, idx
if __name__ == '__main__':
parser = argparse.ArgumentParser('Evaluation with weighted k-NN on ImageNet')
parser.add_argument('--batch_size_per_gpu', default=128, type=int, help='Per-GPU batch-size')
parser.add_argument('--nb_knn', default=[10, 20, 100, 200], nargs='+', type=int,
help='Number of NN to use. 20 is usually working the best.')
parser.add_argument('--temperature', default=0.07, type=float,
help='Temperature used in the voting coefficient')
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument('--use_cuda', default=True, type=utils.bool_flag,
help="Should we store the features on GPU? We recommend setting this to False if you encounter OOM")
parser.add_argument('--arch', default='vit_small', type=str, help='Architecture')
parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.')
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--dump_features', default=None,
help='Path where to save computed features, empty for no saving')
parser.add_argument('--load_features', default=None, help="""If the features have
already been computed, where to find them.""")
parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
parser.add_argument('--data_path', default='/path/to/imagenet/', type=str)
args = parser.parse_args()
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
cudnn.benchmark = True
if args.load_features:
train_features = torch.load(os.path.join(args.load_features, "trainfeat.pth"))
test_features = torch.load(os.path.join(args.load_features, "testfeat.pth"))
train_labels = torch.load(os.path.join(args.load_features, "trainlabels.pth"))
test_labels = torch.load(os.path.join(args.load_features, "testlabels.pth"))
else:
# need to extract features !
train_features, test_features, train_labels, test_labels = extract_feature_pipeline(args)
if utils.get_rank() == 0:
if args.use_cuda:
train_features = train_features.cuda()
test_features = test_features.cuda()
train_labels = train_labels.cuda()
test_labels = test_labels.cuda()
print("Features are ready!\nStart the k-NN classification.")
for k in args.nb_knn:
top1, top5 = knn_classifier(train_features, train_labels,
test_features, test_labels, k, args.temperature)
print(f"{k}-NN classifier result: Top1: {top1}, Top5: {top5}")
dist.barrier()
|