Spaces:
Runtime error
Runtime error
File size: 12,631 Bytes
33d5fe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import pickle
import argparse
import torch
from torch import nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torchvision import models as torchvision_models
from torchvision import transforms as pth_transforms
from PIL import Image, ImageFile
import numpy as np
import utils
import vision_transformer as vits
from eval_knn import extract_features
class CopydaysDataset():
def __init__(self, basedir):
self.basedir = basedir
self.block_names = (
['original', 'strong'] +
['jpegqual/%d' % i for i in
[3, 5, 8, 10, 15, 20, 30, 50, 75]] +
['crops/%d' % i for i in
[10, 15, 20, 30, 40, 50, 60, 70, 80]])
self.nblocks = len(self.block_names)
self.query_blocks = range(self.nblocks)
self.q_block_sizes = np.ones(self.nblocks, dtype=int) * 157
self.q_block_sizes[1] = 229
# search only among originals
self.database_blocks = [0]
def get_block(self, i):
dirname = self.basedir + '/' + self.block_names[i]
fnames = [dirname + '/' + fname
for fname in sorted(os.listdir(dirname))
if fname.endswith('.jpg')]
return fnames
def get_block_filenames(self, subdir_name):
dirname = self.basedir + '/' + subdir_name
return [fname
for fname in sorted(os.listdir(dirname))
if fname.endswith('.jpg')]
def eval_result(self, ids, distances):
j0 = 0
for i in range(self.nblocks):
j1 = j0 + self.q_block_sizes[i]
block_name = self.block_names[i]
I = ids[j0:j1] # block size
sum_AP = 0
if block_name != 'strong':
# 1:1 mapping of files to names
positives_per_query = [[i] for i in range(j1 - j0)]
else:
originals = self.get_block_filenames('original')
strongs = self.get_block_filenames('strong')
# check if prefixes match
positives_per_query = [
[j for j, bname in enumerate(originals)
if bname[:4] == qname[:4]]
for qname in strongs]
for qno, Iline in enumerate(I):
positives = positives_per_query[qno]
ranks = []
for rank, bno in enumerate(Iline):
if bno in positives:
ranks.append(rank)
sum_AP += score_ap_from_ranks_1(ranks, len(positives))
print("eval on %s mAP=%.3f" % (
block_name, sum_AP / (j1 - j0)))
j0 = j1
# from the Holidays evaluation package
def score_ap_from_ranks_1(ranks, nres):
""" Compute the average precision of one search.
ranks = ordered list of ranks of true positives
nres = total number of positives in dataset
"""
# accumulate trapezoids in PR-plot
ap = 0.0
# All have an x-size of:
recall_step = 1.0 / nres
for ntp, rank in enumerate(ranks):
# y-size on left side of trapezoid:
# ntp = nb of true positives so far
# rank = nb of retrieved items so far
if rank == 0:
precision_0 = 1.0
else:
precision_0 = ntp / float(rank)
# y-size on right side of trapezoid:
# ntp and rank are increased by one
precision_1 = (ntp + 1) / float(rank + 1)
ap += (precision_1 + precision_0) * recall_step / 2.0
return ap
class ImgListDataset(torch.utils.data.Dataset):
def __init__(self, img_list, transform=None):
self.samples = img_list
self.transform = transform
def __getitem__(self, i):
with open(self.samples[i], 'rb') as f:
img = Image.open(f)
img = img.convert('RGB')
if self.transform is not None:
img = self.transform(img)
return img, i
def __len__(self):
return len(self.samples)
def is_image_file(s):
ext = s.split(".")[-1]
if ext in ['jpg', 'jpeg', 'png', 'ppm', 'bmp', 'pgm', 'tif', 'tiff', 'webp']:
return True
return False
@torch.no_grad()
def extract_features(image_list, model, args):
transform = pth_transforms.Compose([
pth_transforms.Resize((args.imsize, args.imsize), interpolation=3),
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
tempdataset = ImgListDataset(image_list, transform=transform)
data_loader = torch.utils.data.DataLoader(tempdataset, batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers, drop_last=False,
sampler=torch.utils.data.DistributedSampler(tempdataset, shuffle=False))
features = None
for samples, index in utils.MetricLogger(delimiter=" ").log_every(data_loader, 10):
samples, index = samples.cuda(non_blocking=True), index.cuda(non_blocking=True)
feats = model.get_intermediate_layers(samples, n=1)[0].clone()
cls_output_token = feats[:, 0, :] # [CLS] token
# GeM with exponent 4 for output patch tokens
b, h, w, d = len(samples), int(samples.shape[-2] / model.patch_embed.patch_size), int(samples.shape[-1] / model.patch_embed.patch_size), feats.shape[-1]
feats = feats[:, 1:, :].reshape(b, h, w, d)
feats = feats.clamp(min=1e-6).permute(0, 3, 1, 2)
feats = nn.functional.avg_pool2d(feats.pow(4), (h, w)).pow(1. / 4).reshape(b, -1)
# concatenate [CLS] token and GeM pooled patch tokens
feats = torch.cat((cls_output_token, feats), dim=1)
# init storage feature matrix
if dist.get_rank() == 0 and features is None:
features = torch.zeros(len(data_loader.dataset), feats.shape[-1])
if args.use_cuda:
features = features.cuda(non_blocking=True)
# get indexes from all processes
y_all = torch.empty(dist.get_world_size(), index.size(0), dtype=index.dtype, device=index.device)
y_l = list(y_all.unbind(0))
y_all_reduce = torch.distributed.all_gather(y_l, index, async_op=True)
y_all_reduce.wait()
index_all = torch.cat(y_l)
# share features between processes
feats_all = torch.empty(dist.get_world_size(), feats.size(0), feats.size(1),
dtype=feats.dtype, device=feats.device)
output_l = list(feats_all.unbind(0))
output_all_reduce = torch.distributed.all_gather(output_l, feats, async_op=True)
output_all_reduce.wait()
# update storage feature matrix
if dist.get_rank() == 0:
if args.use_cuda:
features.index_copy_(0, index_all, torch.cat(output_l))
else:
features.index_copy_(0, index_all.cpu(), torch.cat(output_l).cpu())
return features # features is still None for every rank which is not 0 (main)
if __name__ == '__main__':
parser = argparse.ArgumentParser('Copy detection on Copydays')
parser.add_argument('--data_path', default='/path/to/copydays/', type=str,
help="See https://lear.inrialpes.fr/~jegou/data.php#copydays")
parser.add_argument('--whitening_path', default='/path/to/whitening_data/', type=str,
help="""Path to directory with images used for computing the whitening operator.
In our paper, we use 20k random images from YFCC100M.""")
parser.add_argument('--distractors_path', default='/path/to/distractors/', type=str,
help="Path to directory with distractors images. In our paper, we use 10k random images from YFCC100M.")
parser.add_argument('--imsize', default=320, type=int, help='Image size (square image)')
parser.add_argument('--batch_size_per_gpu', default=16, type=int, help='Per-GPU batch-size')
parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.")
parser.add_argument('--use_cuda', default=True, type=utils.bool_flag)
parser.add_argument('--arch', default='vit_base', type=str, help='Architecture')
parser.add_argument('--patch_size', default=8, type=int, help='Patch resolution of the model.')
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument('--num_workers', default=10, type=int, help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
args = parser.parse_args()
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items())))
cudnn.benchmark = True
# ============ building network ... ============
if "vit" in args.arch:
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.")
else:
print(f"Architecture {args.arch} non supported")
sys.exit(1)
if args.use_cuda:
model.cuda()
model.eval()
utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size)
dataset = CopydaysDataset(args.data_path)
# ============ Extract features ... ============
# extract features for queries
queries = []
for q in dataset.query_blocks:
queries.append(extract_features(dataset.get_block(q), model, args))
if utils.get_rank() == 0:
queries = torch.cat(queries)
print(f"Extraction of queries features done. Shape: {queries.shape}")
# extract features for database
database = []
for b in dataset.database_blocks:
database.append(extract_features(dataset.get_block(b), model, args))
# extract features for distractors
if os.path.isdir(args.distractors_path):
print("Using distractors...")
list_distractors = [os.path.join(args.distractors_path, s) for s in os.listdir(args.distractors_path) if is_image_file(s)]
database.append(extract_features(list_distractors, model, args))
if utils.get_rank() == 0:
database = torch.cat(database)
print(f"Extraction of database and distractors features done. Shape: {database.shape}")
# ============ Whitening ... ============
if os.path.isdir(args.whitening_path):
print(f"Extracting features on images from {args.whitening_path} for learning the whitening operator.")
list_whit = [os.path.join(args.whitening_path, s) for s in os.listdir(args.whitening_path) if is_image_file(s)]
features_for_whitening = extract_features(list_whit, model, args)
if utils.get_rank() == 0:
# center
mean_feature = torch.mean(features_for_whitening, dim=0)
database -= mean_feature
queries -= mean_feature
pca = utils.PCA(dim=database.shape[-1], whit=0.5)
# compute covariance
cov = torch.mm(features_for_whitening.T, features_for_whitening) / features_for_whitening.shape[0]
pca.train_pca(cov.cpu().numpy())
database = pca.apply(database)
queries = pca.apply(queries)
# ============ Copy detection ... ============
if utils.get_rank() == 0:
# l2 normalize the features
database = nn.functional.normalize(database, dim=1, p=2)
queries = nn.functional.normalize(queries, dim=1, p=2)
# similarity
similarity = torch.mm(queries, database.T)
distances, indices = similarity.topk(20, largest=True, sorted=True)
# evaluate
retrieved = dataset.eval_result(indices, distances)
dist.barrier()
|