Spaces:
Running
on
T4
Running
on
T4
yourusername
commited on
Commit
·
059b9d8
1
Parent(s):
4014619
:sparkles: updates
Browse files- app.py +106 -43
- obama.webm +0 -0
app.py
CHANGED
@@ -1,26 +1,41 @@
|
|
1 |
-
|
2 |
-
import
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
|
|
5 |
from encoded_video import EncodedVideo, write_video
|
6 |
-
from
|
|
|
7 |
|
8 |
-
|
9 |
"AK391/animegan2-pytorch:main",
|
10 |
"generator",
|
11 |
pretrained=True,
|
12 |
device="cuda",
|
13 |
progress=True,
|
14 |
-
force_reload=True,
|
15 |
-
)
|
16 |
-
face2paint = torch.hub.load(
|
17 |
-
'AK391/animegan2-pytorch:main', 'face2paint',
|
18 |
-
size=512, device="cuda",side_by_side=False
|
19 |
)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
"""
|
25 |
Uniformly subsamples num_samples indices from the temporal dimension of the video.
|
26 |
When num_samples is larger than the size of temporal dimension of the video, it
|
@@ -41,51 +56,99 @@ def uniform_temporal_subsample(
|
|
41 |
return torch.index_select(x, temporal_dim, indices)
|
42 |
|
43 |
|
44 |
-
def
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
clip = vid.get_clip(start_sec, start_sec + duration)
|
50 |
-
|
|
|
51 |
audio_arr = np.expand_dims(clip['audio'], 0)
|
52 |
audio_fps = None if not vid._has_audio else vid._container.streams.audio[0].sample_rate
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
for frame in frames:
|
58 |
-
im = Image.fromarray(frame)
|
59 |
-
out = face2paint(model2, im)
|
60 |
-
out_frames.append(np.array(out))
|
61 |
|
62 |
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
out_file = BytesIO(bytes_mp4)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
write_video(
|
72 |
-
'out.mp4',
|
73 |
-
out_frames,
|
74 |
-
fps=out_fps,
|
75 |
-
audio_array=audio_arr,
|
76 |
-
audio_fps=audio_fps,
|
77 |
-
audio_codec='aac'
|
78 |
-
)
|
79 |
return 'out.mp4'
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
gr.Interface(
|
82 |
-
|
83 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
84 |
outputs=gr.outputs.Video(),
|
85 |
title='AnimeGANV2 On Videos',
|
86 |
description="Applying AnimeGAN-V2 to frame from video clips",
|
87 |
-
article
|
88 |
enable_queue=True,
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import math
|
3 |
+
import tempfile
|
4 |
+
from io import BytesIO
|
5 |
+
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
+
import torch
|
9 |
from encoded_video import EncodedVideo, write_video
|
10 |
+
from PIL import Image
|
11 |
+
from torchvision.transforms.functional import center_crop, to_tensor
|
12 |
|
13 |
+
model = torch.hub.load(
|
14 |
"AK391/animegan2-pytorch:main",
|
15 |
"generator",
|
16 |
pretrained=True,
|
17 |
device="cuda",
|
18 |
progress=True,
|
|
|
|
|
|
|
|
|
|
|
19 |
)
|
20 |
|
21 |
+
|
22 |
+
def face2paint(model: torch.nn.Module, img: Image.Image, size: int = 512, device: str = 'cuda'):
|
23 |
+
w, h = img.size
|
24 |
+
s = min(w, h)
|
25 |
+
img = img.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
|
26 |
+
img = img.resize((size, size), Image.LANCZOS)
|
27 |
+
|
28 |
+
with torch.no_grad():
|
29 |
+
input = to_tensor(img).unsqueeze(0) * 2 - 1
|
30 |
+
output = model(input.to(device)).cpu()[0]
|
31 |
+
|
32 |
+
output = (output * 0.5 + 0.5).clip(0, 1) * 255.0
|
33 |
+
|
34 |
+
return output
|
35 |
+
|
36 |
+
|
37 |
+
# This function is taken from pytorchvideo!
|
38 |
+
def uniform_temporal_subsample(x: torch.Tensor, num_samples: int, temporal_dim: int = -3) -> torch.Tensor:
|
39 |
"""
|
40 |
Uniformly subsamples num_samples indices from the temporal dimension of the video.
|
41 |
When num_samples is larger than the size of temporal dimension of the video, it
|
|
|
56 |
return torch.index_select(x, temporal_dim, indices)
|
57 |
|
58 |
|
59 |
+
def short_side_scale(
|
60 |
+
x: torch.Tensor,
|
61 |
+
size: int,
|
62 |
+
interpolation: str = "bilinear",
|
63 |
+
) -> torch.Tensor:
|
64 |
+
"""
|
65 |
+
Determines the shorter spatial dim of the video (i.e. width or height) and scales
|
66 |
+
it to the given size. To maintain aspect ratio, the longer side is then scaled
|
67 |
+
accordingly.
|
68 |
+
Args:
|
69 |
+
x (torch.Tensor): A video tensor of shape (C, T, H, W) and type torch.float32.
|
70 |
+
size (int): The size the shorter side is scaled to.
|
71 |
+
interpolation (str): Algorithm used for upsampling,
|
72 |
+
options: nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear' | 'area'
|
73 |
+
Returns:
|
74 |
+
An x-like Tensor with scaled spatial dims.
|
75 |
+
"""
|
76 |
+
assert len(x.shape) == 4
|
77 |
+
assert x.dtype == torch.float32
|
78 |
+
c, t, h, w = x.shape
|
79 |
+
if w < h:
|
80 |
+
new_h = int(math.floor((float(h) / w) * size))
|
81 |
+
new_w = size
|
82 |
+
else:
|
83 |
+
new_h = size
|
84 |
+
new_w = int(math.floor((float(w) / h) * size))
|
85 |
+
|
86 |
+
return torch.nn.functional.interpolate(x, size=(new_h, new_w), mode=interpolation, align_corners=False)
|
87 |
+
|
88 |
+
|
89 |
+
def inference_step(vid, start_sec, duration, out_fps):
|
90 |
+
# vid =
|
91 |
clip = vid.get_clip(start_sec, start_sec + duration)
|
92 |
+
# TxCxHxW -> CxTxHxW
|
93 |
+
video_arr = torch.from_numpy(clip['video']).permute(3, 0, 1, 2)
|
94 |
audio_arr = np.expand_dims(clip['audio'], 0)
|
95 |
audio_fps = None if not vid._has_audio else vid._container.streams.audio[0].sample_rate
|
96 |
|
97 |
+
x = uniform_temporal_subsample(video_arr, duration * out_fps)
|
98 |
+
x = center_crop(short_side_scale(x, 512), 512)
|
99 |
+
x /= 255.0
|
100 |
+
x = x.permute(1, 0, 2, 3)
|
101 |
+
with torch.no_grad():
|
102 |
+
output = model(x.to('cuda')).detach().cpu()
|
103 |
+
output = (output * 0.5 + 0.5).clip(0, 1) * 255.0
|
104 |
+
# CxTx512x512 -> TxCx512x512
|
105 |
+
output_video = output.permute(0, 2, 3, 1).numpy()
|
106 |
|
107 |
+
return output_video, audio_arr, out_fps, audio_fps
|
|
|
|
|
|
|
|
|
108 |
|
109 |
|
110 |
+
def predict_fn(filepath, start_sec, duration, out_fps):
|
111 |
+
# out_fps=12
|
112 |
+
vid = EncodedVideo.from_path(filepath)
|
113 |
+
for i in range(duration):
|
114 |
+
video, audio, fps, audio_fps = inference_step(vid=vid, start_sec=i + start_sec, duration=1, out_fps=out_fps)
|
115 |
+
gc.collect()
|
116 |
+
if i == 0:
|
117 |
+
video_all = video
|
118 |
+
audio_all = audio
|
119 |
+
else:
|
120 |
+
video_all = np.concatenate((video_all, video))
|
121 |
+
audio_all = np.hstack((audio_all, audio))
|
122 |
|
123 |
+
write_video('out.mp4', video_all, fps=fps, audio_array=audio_all, audio_fps=audio_fps, audio_codec='aac')
|
|
|
124 |
|
125 |
+
del video_all
|
126 |
+
del audio_all
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
return 'out.mp4'
|
129 |
|
130 |
+
|
131 |
+
article = """
|
132 |
+
<p style='text-align: center'>
|
133 |
+
<a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a>
|
134 |
+
</p>
|
135 |
+
"""
|
136 |
+
|
137 |
gr.Interface(
|
138 |
+
predict_fn,
|
139 |
+
inputs=[
|
140 |
+
gr.inputs.Video(),
|
141 |
+
gr.inputs.Slider(minimum=0, maximum=300, step=1, default=0),
|
142 |
+
gr.inputs.Slider(minimum=1, maximum=10, step=1, default=2),
|
143 |
+
gr.inputs.Slider(minimum=12, maximum=30, step=6, default=24),
|
144 |
+
],
|
145 |
outputs=gr.outputs.Video(),
|
146 |
title='AnimeGANV2 On Videos',
|
147 |
description="Applying AnimeGAN-V2 to frame from video clips",
|
148 |
+
article=article,
|
149 |
enable_queue=True,
|
150 |
+
examples=[
|
151 |
+
['obama.webm', 23, 10, 30],
|
152 |
+
],
|
153 |
+
allow_flagging=False,
|
154 |
+
).launch(debug=True)
|
obama.webm
ADDED
Binary file (5.69 MB). View file
|
|