nastasiasnk commited on
Commit
2a4109d
·
verified ·
1 Parent(s): 8e986e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -29
app.py CHANGED
@@ -75,32 +75,21 @@ else:
75
  df_speckle_lu = speckle_utils.get_dataframe(streamData, return_original_df=False)
76
  df_lu = df_speckle_lu.copy()
77
  df_lu = df_lu.astype(str)
78
- df_lu = df_lu.set_index("uuid", drop=False)
79
-
80
 
81
  df_dm = matrices[distanceMatrixActivityNodes]
82
 
83
-
84
- #matrices_dict = matrices.to_dict('index')
85
-
86
-
87
- df_dm = matrices[distanceMatrixActivityNodes]
88
-
89
-
90
  df_dm_dict = df_dm.to_dict('index')
91
 
92
-
93
 
94
  # Replace infinity with 10000 and NaN values with 0, then convert to integers
95
  df_dm = df_dm.replace([np.inf, -np.inf], 10000).fillna(0)
96
  df_dm = df_dm.apply(pd.to_numeric, errors='coerce')
97
  df_dm = df_dm.round(0).astype(int)
98
-
99
- #df_dm_transport = matrices[distanceMatrixTransportStops]
100
- #df_dm_transport_dictionary = df_dm_transport.to_dict('index')
101
-
102
  mask_connected = df_dm.index.tolist()
103
- lu_columns = []
 
104
  for name in df_lu.columns:
105
  if name.startswith("lu+"):
106
  lu_columns.append(name)
@@ -132,13 +121,13 @@ def test(input_json):
132
 
133
  from config import useGrasshopperData
134
 
135
- if useGrasshopperData == True:
136
  matrix = inputs['input']["matrix"]
137
- landuses = inputs['input']["landuse_areas"]
138
 
139
  dfLanduses = pd.DataFrame(landuses).T
140
  dfLanduses = dfLanduses.apply(pd.to_numeric, errors='coerce')
141
- dfLanduses = dfLanduses.replace([np.inf, -np.inf], 0).fillna(0)
142
  dfLanduses = dfLanduses.round(0).astype(int)
143
 
144
  dfMatrix = pd.DataFrame(matrix).T
@@ -146,7 +135,7 @@ def test(input_json):
146
  dfMatrix = dfMatrix.replace([np.inf, -np.inf], 10000).fillna(0)
147
  dfMatrix = dfMatrix.round(0).astype(int)
148
  else:
149
- dfLanduses = df_lu_filtered.copy()
150
  dfMatrix = df_dm.copy()
151
 
152
 
@@ -154,7 +143,7 @@ def test(input_json):
154
  dm_dictionary = dfMatrix.to_dict('index')
155
 
156
  attributeMapperDict_gh = inputs['input']["attributeMapperDict"]
157
- landuseMapperDict_gh = inputs['input']["landuseMapperDict"]
158
 
159
 
160
  from config import alpha as alphaDefault
@@ -174,15 +163,10 @@ def test(input_json):
174
 
175
 
176
 
177
-
178
-
179
-
180
- from imports_utils import splitDictByStrFragmentInColumnName
181
-
182
-
183
 
184
  # create a mask based on the matrix size and ids, crop activity nodes to the mask
185
- mask_connected = dfMatrix.index.tolist()
186
 
187
  valid_indexes = [idx for idx in mask_connected if idx in dfLanduses.index]
188
  # Identify and report missing indexes
@@ -222,8 +206,8 @@ def test(input_json):
222
  #AccessibilityInputs = pd.concat([subdomainsAccessibility, artAccessibility,gmtAccessibility], axis=1)
223
 
224
 
225
- if 'jobs' not in subdomainsAccessibility.columns:
226
- print("Error: Column 'jobs' does not exist in the subdomainsAccessibility.")
227
 
228
  livability = accessibilityToLivability(dfMatrix,subdomainsAccessibility,livabilityMapperDict,domainsUnique)
229
 
 
75
  df_speckle_lu = speckle_utils.get_dataframe(streamData, return_original_df=False)
76
  df_lu = df_speckle_lu.copy()
77
  df_lu = df_lu.astype(str)
78
+ df_lu = df_lu.set_index("uuid", drop=False) # variable, uuid as default
 
79
 
80
  df_dm = matrices[distanceMatrixActivityNodes]
81
 
 
 
 
 
 
 
 
82
  df_dm_dict = df_dm.to_dict('index')
83
 
 
84
 
85
  # Replace infinity with 10000 and NaN values with 0, then convert to integers
86
  df_dm = df_dm.replace([np.inf, -np.inf], 10000).fillna(0)
87
  df_dm = df_dm.apply(pd.to_numeric, errors='coerce')
88
  df_dm = df_dm.round(0).astype(int)
89
+
 
 
 
90
  mask_connected = df_dm.index.tolist()
91
+
92
+ lu_columns = [] # provided by user? or prefix
93
  for name in df_lu.columns:
94
  if name.startswith("lu+"):
95
  lu_columns.append(name)
 
121
 
122
  from config import useGrasshopperData
123
 
124
+ if useGrasshopperData == True: # grasshopper input
125
  matrix = inputs['input']["matrix"]
126
+ landuses = inputs['input']["landuse_areas"] # fetch grasshoper data or not
127
 
128
  dfLanduses = pd.DataFrame(landuses).T
129
  dfLanduses = dfLanduses.apply(pd.to_numeric, errors='coerce')
130
+ dfLanduses = dfLanduses.replace([np.inf, -np.inf], 0).fillna(0) # cleaning function?
131
  dfLanduses = dfLanduses.round(0).astype(int)
132
 
133
  dfMatrix = pd.DataFrame(matrix).T
 
135
  dfMatrix = dfMatrix.replace([np.inf, -np.inf], 10000).fillna(0)
136
  dfMatrix = dfMatrix.round(0).astype(int)
137
  else:
138
+ dfLanduses = df_lu_filtered.copy() # fetch speckl data or not
139
  dfMatrix = df_dm.copy()
140
 
141
 
 
143
  dm_dictionary = dfMatrix.to_dict('index')
144
 
145
  attributeMapperDict_gh = inputs['input']["attributeMapperDict"]
146
+ landuseMapperDict_gh = inputs['input']["landuseMapperDict"] # if fetch notion data or not, def
147
 
148
 
149
  from config import alpha as alphaDefault
 
163
 
164
 
165
 
166
+ #from imports_utils import splitDictByStrFragmentInColumnName
 
 
 
 
 
167
 
168
  # create a mask based on the matrix size and ids, crop activity nodes to the mask
169
+ #mask_connected = dfMatrix.index.tolist()
170
 
171
  valid_indexes = [idx for idx in mask_connected if idx in dfLanduses.index]
172
  # Identify and report missing indexes
 
206
  #AccessibilityInputs = pd.concat([subdomainsAccessibility, artAccessibility,gmtAccessibility], axis=1)
207
 
208
 
209
+ #if 'jobs' not in subdomainsAccessibility.columns:
210
+ # print("Error: Column 'jobs' does not exist in the subdomainsAccessibility.")
211
 
212
  livability = accessibilityToLivability(dfMatrix,subdomainsAccessibility,livabilityMapperDict,domainsUnique)
213