Spaces:
Runtime error
Runtime error
from typing import Dict, Any, List | |
from loguru import logger | |
from utils.llm_orchestrator import LLMOrchestrator | |
class ReasoningAgent: | |
def __init__(self, llm_api_key: str): | |
"""Initialize the Reasoning Agent.""" | |
logger.info("Initializing ReasoningAgent") | |
self.llm_orchestrator = LLMOrchestrator(llm_api_key) | |
self.capabilities = [ | |
"step_by_step_reasoning", | |
"context_management", | |
"agent_coordination", | |
"result_aggregation" | |
] | |
self.setup_logger() | |
def setup_logger(self): | |
"""Configure logging for the agent.""" | |
logger.add("logs/reasoning_agent.log", rotation="500 MB") | |
async def perform_reasoning( | |
self, goal: str, available_agents: List[Dict[str, Any]]) -> Dict[str, Any]: | |
"""Perform step-by-step reasoning to achieve a goal.""" | |
logger.info(f"Performing reasoning for goal: {goal}") | |
try: | |
context = { | |
"goal": goal, | |
"available_agents": available_agents, | |
"steps": [] | |
} | |
# Example of a simple reasoning process with 2 steps. | |
# This can be made more sophisticated based on the specific needs. | |
for step in range(2): | |
prompt = self.generate_reasoning_prompt(context) | |
response = await self.llm_orchestrator.generate_completion(prompt) | |
logger.info(f"Reasoning step {step + 1}: {response}") | |
# Placeholder for action execution based on reasoning | |
action = self.extract_action(response) | |
if action and action["agent"] != "reasoning_agent": | |
# Here we simulate executing an action with another agent | |
# In a real scenario, this would involve calling the | |
# appropriate agent | |
action_result = await self.execute_agent_action(action, context) | |
context["steps"].append({ | |
"step": step + 1, | |
"prompt": prompt, | |
"response": response, | |
"action": action, | |
"action_result": action_result | |
}) | |
else: | |
context["steps"].append({ | |
"step": step + 1, | |
"prompt": prompt, | |
"response": response, | |
"action": action | |
}) | |
return { | |
"status": "success", | |
"reasoning_process": context["steps"], | |
"result": "Reasoning process completed." # Placeholder for final result | |
} | |
except Exception as e: | |
logger.error(f"Error during reasoning: {str(e)}") | |
return { | |
"status": "error", | |
"message": str(e) | |
} | |
def generate_reasoning_prompt(self, context: Dict[str, Any]) -> str: | |
"""Generate a prompt for the LLM to guide the reasoning process.""" | |
prompt = f""" | |
Goal: {context['goal']} | |
Available Agents: {', '.join([agent['name'] for agent in context['available_agents']])} | |
Reasoning Steps: | |
""" | |
for step in context["steps"]: | |
prompt += f"- Step {step['step']}: {step['response']}\n" | |
if "action" in step and step["action"]: | |
prompt += f" Action: {step['action']}\n" | |
if "action_result" in step and step["action_result"]: | |
prompt += f" Result: {step['action_result']}\n" | |
prompt += "What is the next logical step to achieve the goal? Explain your reasoning." | |
return prompt | |
def extract_action(self, response: str) -> Dict[str, Any]: | |
"""Extract the next action to be taken based on the LLM's response.""" | |
# Basic implementation: Assume the last line of the response contains | |
# the action | |
lines = response.strip().split("\n") | |
last_line = lines[-1] | |
if ":" in last_line: | |
parts = last_line.split(":") | |
agent = parts[0].strip() | |
parameters = parts[1].strip() if len(parts) > 1 else "" | |
return { | |
"agent": agent, | |
"parameters": parameters | |
} | |
else: | |
return None | |
async def execute_agent_action( | |
self, action: Dict[str, Any], context: Dict[str, Any]) -> str: | |
"""Simulate executing an action with another agent.""" | |
# This is a placeholder for actual agent execution | |
# In a real scenario, this method would call the appropriate agent based on action["agent"] | |
# and pass the necessary parameters from action["parameters"] | |
# Find the agent in the available agents list | |
agent_info = next( | |
(agent for agent in context["available_agents"] | |
if agent["name"] == action["agent"]), | |
None) | |
if agent_info: | |
logger.info( | |
f"Executing action with agent: {action['agent']} with parameters: {action['parameters']}") | |
# Simulate an action result | |
return f"Result of action with {action['agent']}: Success" | |
else: | |
logger.error(f"Agent {action['agent']} not found.") | |
return "Error: Agent not found" | |