"""Analogical reasoning strategy implementation.""" import logging from typing import Dict, Any, List, Optional, Set, Tuple, Callable import json from dataclasses import dataclass, field from enum import Enum from datetime import datetime import numpy as np from collections import defaultdict from .base import ReasoningStrategy, StrategyResult class AnalogicalLevel(Enum): """Levels of analogical similarity.""" SURFACE = "surface" STRUCTURAL = "structural" SEMANTIC = "semantic" FUNCTIONAL = "functional" CAUSAL = "causal" ABSTRACT = "abstract" class MappingType(Enum): """Types of analogical mappings.""" DIRECT = "direct" TRANSFORMED = "transformed" COMPOSITE = "composite" ABSTRACT = "abstract" METAPHORICAL = "metaphorical" HYBRID = "hybrid" @dataclass class AnalogicalPattern: """Represents a pattern for analogical matching.""" id: str level: AnalogicalLevel features: Dict[str, Any] relations: List[Tuple[str, str, str]] # (entity1, relation, entity2) constraints: List[str] metadata: Dict[str, Any] = field(default_factory=dict) timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) @dataclass class AnalogicalMapping: """Represents a mapping between source and target domains.""" id: str type: MappingType source_elements: Dict[str, Any] target_elements: Dict[str, Any] correspondences: List[Tuple[str, str, float]] # (source, target, strength) transformations: List[Dict[str, Any]] confidence: float timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) @dataclass class AnalogicalSolution: """Represents a solution derived through analogical reasoning.""" id: str source_analogy: str mapping: AnalogicalMapping adaptation: Dict[str, Any] inference: Dict[str, Any] confidence: float validation: Dict[str, Any] metadata: Dict[str, Any] = field(default_factory=dict) timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) class AnalogicalStrategy(ReasoningStrategy): """Advanced analogical reasoning that: 1. Identifies relevant analogies 2. Maps relationships 3. Transfers knowledge 4. Validates mappings 5. Refines analogies """ def __init__(self, config: Optional[Dict[str, Any]] = None): """Initialize analogical reasoning.""" super().__init__() self.config = config or {} # Standard reasoning parameters self.min_confidence = self.config.get('min_confidence', 0.7) self.min_similarity = self.config.get('min_similarity', 0.6) self.max_candidates = self.config.get('max_candidates', 5) self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7) # Knowledge base self.patterns: Dict[str, AnalogicalPattern] = {} self.mappings: Dict[str, AnalogicalMapping] = {} self.solutions: Dict[str, AnalogicalSolution] = {} # Performance metrics self.performance_metrics = { 'pattern_matches': 0, 'successful_mappings': 0, 'failed_mappings': 0, 'adaptation_success_rate': 0.0, 'avg_solution_confidence': 0.0, 'pattern_distribution': defaultdict(int), 'mapping_distribution': defaultdict(int), 'total_patterns_used': 0, 'total_mappings_created': 0, 'total_solutions_generated': 0 } async def reason( self, query: str, context: Dict[str, Any] ) -> StrategyResult: """ Apply analogical reasoning to analyze the query. Args: query: The query to reason about context: Additional context and parameters Returns: StrategyResult containing the reasoning output and metadata """ try: # Extract patterns patterns = await self._extract_patterns(query, context) self.performance_metrics['total_patterns_used'] = len(patterns) # Find matches matches = await self._find_matches(patterns, context) self.performance_metrics['pattern_matches'] = len(matches) # Create mappings mappings = await self._create_mappings(matches, context) self.performance_metrics['total_mappings_created'] = len(mappings) # Generate solutions solutions = await self._generate_solutions(mappings, context) self.performance_metrics['total_solutions_generated'] = len(solutions) # Select best solution best_solution = await self._select_best_solution(solutions, context) if best_solution: # Update knowledge base self._update_knowledge(patterns, mappings, best_solution) # Update metrics self._update_metrics(patterns, mappings, solutions, best_solution) # Build reasoning trace reasoning_trace = self._build_reasoning_trace( patterns, matches, mappings, solutions, best_solution ) return StrategyResult( strategy_type="analogical", success=True, answer=best_solution.inference.get('conclusion'), confidence=best_solution.confidence, reasoning_trace=reasoning_trace, metadata={ 'source_analogy': best_solution.source_analogy, 'mapping_type': best_solution.mapping.type.value, 'adaptation_details': best_solution.adaptation, 'validation_results': best_solution.validation }, performance_metrics=self.performance_metrics ) return StrategyResult( strategy_type="analogical", success=False, answer=None, confidence=0.0, reasoning_trace=[{ 'step': 'error', 'error': 'No valid solution found', 'timestamp': datetime.now().isoformat() }], metadata={'error': 'No valid solution found'}, performance_metrics=self.performance_metrics ) except Exception as e: logging.error(f"Analogical reasoning error: {str(e)}") return StrategyResult( strategy_type="analogical", success=False, answer=None, confidence=0.0, reasoning_trace=[{ 'step': 'error', 'error': str(e), 'timestamp': datetime.now().isoformat() }], metadata={'error': str(e)}, performance_metrics=self.performance_metrics ) async def _extract_patterns( self, query: str, context: Dict[str, Any] ) -> List[AnalogicalPattern]: """Extract patterns from query for analogical matching.""" # This is a placeholder implementation # In practice, this would use more sophisticated pattern extraction pattern = AnalogicalPattern( id=f"pattern_{len(self.patterns)}", level=AnalogicalLevel.SURFACE, features={'query': query}, relations=[], constraints=[], metadata={'context': context} ) return [pattern] async def _find_matches( self, patterns: List[AnalogicalPattern], context: Dict[str, Any] ) -> List[Dict[str, Any]]: """Find matching patterns in knowledge base.""" matches = [] for pattern in patterns: # Example matching logic similarity = np.random.random() # Placeholder if similarity >= self.min_similarity: matches.append({ 'pattern': pattern, 'similarity': similarity, 'features': pattern.features }) return sorted( matches, key=lambda x: x['similarity'], reverse=True )[:self.max_candidates] async def _create_mappings( self, matches: List[Dict[str, Any]], context: Dict[str, Any] ) -> List[AnalogicalMapping]: """Create mappings between source and target domains.""" mappings = [] for match in matches: mapping = AnalogicalMapping( id=f"mapping_{len(self.mappings)}", type=MappingType.DIRECT, source_elements=match['features'], target_elements=context, correspondences=[], transformations=[], confidence=match['similarity'] ) mappings.append(mapping) return mappings async def _generate_solutions( self, mappings: List[AnalogicalMapping], context: Dict[str, Any] ) -> List[AnalogicalSolution]: """Generate solutions through analogical transfer.""" solutions = [] for mapping in mappings: if mapping.confidence >= self.adaptation_threshold: solution = AnalogicalSolution( id=f"solution_{len(self.solutions)}", source_analogy=str(mapping.source_elements), mapping=mapping, adaptation={'applied_rules': []}, inference={'conclusion': 'Analogical solution'}, confidence=mapping.confidence, validation={'checks_passed': True}, metadata={'context': context} ) solutions.append(solution) return solutions async def _select_best_solution( self, solutions: List[AnalogicalSolution], context: Dict[str, Any] ) -> Optional[AnalogicalSolution]: """Select the best solution based on multiple criteria.""" if not solutions: return None # Sort by confidence and return best return max(solutions, key=lambda x: x.confidence) def _update_knowledge( self, patterns: List[AnalogicalPattern], mappings: List[AnalogicalMapping], solution: AnalogicalSolution ) -> None: """Update knowledge base with new patterns and successful mappings.""" # Store new patterns for pattern in patterns: self.patterns[pattern.id] = pattern # Store successful mappings for mapping in mappings: if mapping.confidence >= self.min_confidence: self.mappings[mapping.id] = mapping # Store successful solution self.solutions[solution.id] = solution def _update_metrics( self, patterns: List[AnalogicalPattern], mappings: List[AnalogicalMapping], solutions: List[AnalogicalSolution], best_solution: AnalogicalSolution ) -> None: """Update performance metrics.""" # Update pattern distribution for pattern in patterns: self.performance_metrics['pattern_distribution'][pattern.level] += 1 # Update mapping distribution for mapping in mappings: self.performance_metrics['mapping_distribution'][mapping.type] += 1 if mapping.confidence >= self.min_confidence: self.performance_metrics['successful_mappings'] += 1 else: self.performance_metrics['failed_mappings'] += 1 # Calculate adaptation success rate total_adaptations = len(solutions) successful_adaptations = sum( 1 for s in solutions if s.confidence >= self.adaptation_threshold ) self.performance_metrics['adaptation_success_rate'] = ( successful_adaptations / total_adaptations if total_adaptations > 0 else 0.0 ) # Calculate average solution confidence self.performance_metrics['avg_solution_confidence'] = ( sum(s.confidence for s in solutions) / len(solutions) if solutions else 0.0 ) def _build_reasoning_trace( self, patterns: List[AnalogicalPattern], matches: List[Dict[str, Any]], mappings: List[AnalogicalMapping], solutions: List[AnalogicalSolution], best_solution: AnalogicalSolution ) -> List[Dict[str, Any]]: """Build the reasoning trace for the solution.""" trace = [] # Pattern extraction step trace.append({ 'step': 'pattern_extraction', 'patterns': [self._pattern_to_dict(p) for p in patterns], 'timestamp': datetime.now().isoformat() }) # Pattern matching step trace.append({ 'step': 'pattern_matching', 'matches': matches, 'timestamp': datetime.now().isoformat() }) # Mapping creation step trace.append({ 'step': 'mapping_creation', 'mappings': [self._mapping_to_dict(m) for m in mappings], 'timestamp': datetime.now().isoformat() }) # Solution generation step trace.append({ 'step': 'solution_generation', 'solutions': [self._solution_to_dict(s) for s in solutions], 'timestamp': datetime.now().isoformat() }) # Best solution selection step trace.append({ 'step': 'solution_selection', 'selected_solution': self._solution_to_dict(best_solution), 'timestamp': datetime.now().isoformat() }) return trace def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]: """Convert pattern to dictionary for serialization.""" return { 'id': pattern.id, 'level': pattern.level.value, 'features': pattern.features, 'relations': pattern.relations, 'constraints': pattern.constraints, 'metadata': pattern.metadata, 'timestamp': pattern.timestamp } def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]: """Convert mapping to dictionary for serialization.""" return { 'id': mapping.id, 'type': mapping.type.value, 'source_elements': mapping.source_elements, 'target_elements': mapping.target_elements, 'correspondences': mapping.correspondences, 'transformations': mapping.transformations, 'confidence': mapping.confidence, 'timestamp': mapping.timestamp } def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]: """Convert solution to dictionary for serialization.""" return { 'id': solution.id, 'source_analogy': solution.source_analogy, 'mapping': self._mapping_to_dict(solution.mapping), 'adaptation': solution.adaptation, 'inference': solution.inference, 'confidence': solution.confidence, 'validation': solution.validation, 'metadata': solution.metadata, 'timestamp': solution.timestamp } def clear_knowledge_base(self) -> None: """Clear the knowledge base.""" self.patterns.clear() self.mappings.clear() self.solutions.clear() # Reset performance metrics self.performance_metrics.update({ 'pattern_matches': 0, 'successful_mappings': 0, 'failed_mappings': 0, 'adaptation_success_rate': 0.0, 'avg_solution_confidence': 0.0, 'pattern_distribution': defaultdict(int), 'mapping_distribution': defaultdict(int), 'total_patterns_used': 0, 'total_mappings_created': 0, 'total_solutions_generated': 0 })