Spaces:
Runtime error
Runtime error
"""Quantum-inspired reasoning implementations.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
from .base import ReasoningStrategy, StrategyResult | |
class QuantumOperationType(Enum): | |
"""Types of quantum operations.""" | |
HADAMARD = "hadamard" | |
CNOT = "cnot" | |
PHASE = "phase" | |
MEASURE = "measure" | |
ENTANGLE = "entangle" | |
class QuantumState: | |
"""Quantum state with superposition and entanglement.""" | |
name: str | |
amplitude: complex | |
phase: float | |
entangled_states: List[str] = field(default_factory=list) | |
timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
class QuantumOperation: | |
"""Quantum operation applied to states.""" | |
type: QuantumOperationType | |
target_states: List[str] | |
parameters: Dict[str, Any] | |
timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
class QuantumMeasurement: | |
"""Result of quantum measurement.""" | |
state: str | |
probability: float | |
outcome: Any | |
timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
class QuantumStrategy(ReasoningStrategy): | |
""" | |
Advanced quantum reasoning that: | |
1. Creates quantum states | |
2. Applies quantum operations | |
3. Measures outcomes | |
4. Handles superposition | |
5. Models entanglement | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize quantum reasoning.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
# Configure quantum parameters | |
self.num_qubits = self.config.get('num_qubits', 3) | |
self.measurement_threshold = self.config.get('measurement_threshold', 0.1) | |
self.decoherence_rate = self.config.get('decoherence_rate', 0.01) | |
# Performance metrics | |
self.performance_metrics = { | |
'states_created': 0, | |
'operations_applied': 0, | |
'measurements_made': 0, | |
'successful_operations': 0, | |
'failed_operations': 0, | |
'avg_state_fidelity': 0.0, | |
'operation_distribution': defaultdict(int), | |
'measurement_distribution': defaultdict(float), | |
'total_qubits_used': 0, | |
'total_entanglements': 0 | |
} | |
async def reason( | |
self, | |
query: str, | |
context: Dict[str, Any] | |
) -> StrategyResult: | |
""" | |
Apply quantum reasoning to analyze the query. | |
Args: | |
query: The query to reason about | |
context: Additional context and parameters | |
Returns: | |
StrategyResult containing the reasoning output and metadata | |
""" | |
try: | |
# Initialize quantum states | |
states = await self._initialize_states(query, context) | |
self.performance_metrics['states_created'] = len(states) | |
self.performance_metrics['total_qubits_used'] = sum( | |
len(s.entangled_states) + 1 for s in states | |
) | |
# Apply quantum operations | |
operations = await self._apply_operations(states, context) | |
self.performance_metrics['operations_applied'] = len(operations) | |
# Update operation distribution | |
for op in operations: | |
self.performance_metrics['operation_distribution'][op.type.value] += 1 | |
# Perform measurements | |
measurements = await self._measure_states(states, context) | |
self.performance_metrics['measurements_made'] = len(measurements) | |
# Update measurement distribution | |
for m in measurements: | |
self.performance_metrics['measurement_distribution'][m.state] = m.probability | |
# Analyze results | |
result = await self._analyze_results(measurements, context) | |
# Build reasoning trace | |
reasoning_trace = self._build_reasoning_trace( | |
states, operations, measurements, result | |
) | |
# Calculate confidence | |
confidence = self._calculate_confidence(measurements) | |
if confidence >= self.min_confidence: | |
return StrategyResult( | |
strategy_type="quantum", | |
success=True, | |
answer=result.get('conclusion'), | |
confidence=confidence, | |
reasoning_trace=reasoning_trace, | |
metadata={ | |
'num_states': len(states), | |
'num_operations': len(operations), | |
'num_measurements': len(measurements), | |
'quantum_parameters': { | |
'num_qubits': self.num_qubits, | |
'decoherence_rate': self.decoherence_rate | |
} | |
}, | |
performance_metrics=self.performance_metrics | |
) | |
return StrategyResult( | |
strategy_type="quantum", | |
success=False, | |
answer=None, | |
confidence=confidence, | |
reasoning_trace=reasoning_trace, | |
metadata={'error': 'Insufficient confidence in results'}, | |
performance_metrics=self.performance_metrics | |
) | |
except Exception as e: | |
logging.error(f"Quantum reasoning error: {str(e)}") | |
return StrategyResult( | |
strategy_type="quantum", | |
success=False, | |
answer=None, | |
confidence=0.0, | |
reasoning_trace=[{ | |
'step': 'error', | |
'error': str(e), | |
'timestamp': datetime.now().isoformat() | |
}], | |
metadata={'error': str(e)}, | |
performance_metrics=self.performance_metrics | |
) | |
async def _initialize_states( | |
self, | |
query: str, | |
context: Dict[str, Any] | |
) -> List[QuantumState]: | |
"""Initialize quantum states from query.""" | |
states = [] | |
# Create initial state | |
initial_state = QuantumState( | |
name="initial", | |
amplitude=complex(1.0, 0.0), | |
phase=0.0 | |
) | |
states.append(initial_state) | |
# Create superposition states | |
for i in range(self.num_qubits - 1): | |
state = QuantumState( | |
name=f"superposition_{i}", | |
amplitude=complex(1.0 / np.sqrt(2), 0.0), | |
phase=np.pi / 2, | |
entangled_states=[initial_state.name] | |
) | |
states.append(state) | |
self.performance_metrics['total_entanglements'] += 1 | |
return states | |
async def _apply_operations( | |
self, | |
states: List[QuantumState], | |
context: Dict[str, Any] | |
) -> List[QuantumOperation]: | |
"""Apply quantum operations to states.""" | |
operations = [] | |
for state in states: | |
# Apply Hadamard gate | |
operations.append(QuantumOperation( | |
type=QuantumOperationType.HADAMARD, | |
target_states=[state.name], | |
parameters={'angle': np.pi / 2} | |
)) | |
# Apply CNOT if entangled | |
if state.entangled_states: | |
operations.append(QuantumOperation( | |
type=QuantumOperationType.CNOT, | |
target_states=[state.name] + state.entangled_states, | |
parameters={} | |
)) | |
# Apply phase rotation | |
operations.append(QuantumOperation( | |
type=QuantumOperationType.PHASE, | |
target_states=[state.name], | |
parameters={'phase': state.phase} | |
)) | |
# Track success/failure | |
success = np.random.random() > self.decoherence_rate | |
if success: | |
self.performance_metrics['successful_operations'] += 1 | |
else: | |
self.performance_metrics['failed_operations'] += 1 | |
return operations | |
async def _measure_states( | |
self, | |
states: List[QuantumState], | |
context: Dict[str, Any] | |
) -> List[QuantumMeasurement]: | |
"""Measure quantum states.""" | |
measurements = [] | |
for state in states: | |
# Calculate measurement probability | |
probability = abs(state.amplitude) ** 2 | |
# Apply measurement threshold | |
if probability > self.measurement_threshold: | |
measurements.append(QuantumMeasurement( | |
state=state.name, | |
probability=probability, | |
outcome=1 if probability > 0.5 else 0 | |
)) | |
return measurements | |
async def _analyze_results( | |
self, | |
measurements: List[QuantumMeasurement], | |
context: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Analyze measurement results.""" | |
if not measurements: | |
return {'conclusion': None, 'confidence': 0.0} | |
# Calculate weighted outcome | |
total_probability = sum(m.probability for m in measurements) | |
weighted_outcome = sum( | |
m.probability * m.outcome for m in measurements | |
) / total_probability if total_probability > 0 else 0 | |
return { | |
'conclusion': f"Quantum analysis suggests outcome: {weighted_outcome:.2f}", | |
'confidence': total_probability / len(measurements) | |
} | |
def _calculate_confidence( | |
self, | |
measurements: List[QuantumMeasurement] | |
) -> float: | |
"""Calculate overall confidence score.""" | |
if not measurements: | |
return 0.0 | |
# Base confidence from measurements | |
confidence = sum(m.probability for m in measurements) / len(measurements) | |
# Adjust for decoherence | |
confidence *= (1 - self.decoherence_rate) | |
# Adjust for operation success rate | |
total_ops = ( | |
self.performance_metrics['successful_operations'] + | |
self.performance_metrics['failed_operations'] | |
) | |
if total_ops > 0: | |
success_rate = ( | |
self.performance_metrics['successful_operations'] / total_ops | |
) | |
confidence *= success_rate | |
return min(confidence, 1.0) | |
def _build_reasoning_trace( | |
self, | |
states: List[QuantumState], | |
operations: List[QuantumOperation], | |
measurements: List[QuantumMeasurement], | |
result: Dict[str, Any] | |
) -> List[Dict[str, Any]]: | |
"""Build the reasoning trace for quantum processing.""" | |
trace = [] | |
# State initialization step | |
trace.append({ | |
'step': 'state_initialization', | |
'states': [ | |
{ | |
'name': s.name, | |
'amplitude': abs(s.amplitude), | |
'phase': s.phase, | |
'entangled': len(s.entangled_states) | |
} | |
for s in states | |
], | |
'timestamp': datetime.now().isoformat() | |
}) | |
# Operation application step | |
trace.append({ | |
'step': 'operation_application', | |
'operations': [ | |
{ | |
'type': o.type.value, | |
'targets': o.target_states, | |
'parameters': o.parameters | |
} | |
for o in operations | |
], | |
'timestamp': datetime.now().isoformat() | |
}) | |
# Measurement step | |
trace.append({ | |
'step': 'measurement', | |
'measurements': [ | |
{ | |
'state': m.state, | |
'probability': m.probability, | |
'outcome': m.outcome | |
} | |
for m in measurements | |
], | |
'timestamp': datetime.now().isoformat() | |
}) | |
# Result analysis step | |
trace.append({ | |
'step': 'result_analysis', | |
'result': result, | |
'timestamp': datetime.now().isoformat() | |
}) | |
return trace | |
class QuantumInspiredStrategy(ReasoningStrategy): | |
"""Implements Quantum-Inspired reasoning.""" | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
try: | |
# Create a clean context for serialization | |
clean_context = {k: v for k, v in context.items() if k != "groq_api"} | |
prompt = f""" | |
You are a meta-learning reasoning system that adapts its approach based on problem characteristics. | |
Problem Type: | |
Query: {query} | |
Context: {json.dumps(clean_context)} | |
Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: | |
PROBLEM ANALYSIS: | |
- [First key aspect or complexity factor] | |
- [Second key aspect or complexity factor] | |
- [Third key aspect or complexity factor] | |
SOLUTION PATHS: | |
- Path 1: [Specific solution approach] | |
- Path 2: [Alternative solution approach] | |
- Path 3: [Another alternative approach] | |
META INSIGHTS: | |
- Learning 1: [Key insight about the problem space] | |
- Learning 2: [Key insight about solution approaches] | |
- Learning 3: [Key insight about trade-offs] | |
CONCLUSION: | |
[Final synthesized solution incorporating meta-learnings] | |
""" | |
response = await context["groq_api"].predict(prompt) | |
if not response["success"]: | |
return response | |
# Parse response into components | |
lines = response["answer"].split("\n") | |
problem_analysis = [] | |
solution_paths = [] | |
meta_insights = [] | |
conclusion = "" | |
section = None | |
for line in lines: | |
line = line.strip() | |
if not line: | |
continue | |
if "PROBLEM ANALYSIS:" in line: | |
section = "analysis" | |
elif "SOLUTION PATHS:" in line: | |
section = "paths" | |
elif "META INSIGHTS:" in line: | |
section = "insights" | |
elif "CONCLUSION:" in line: | |
section = "conclusion" | |
elif line.startswith("-"): | |
content = line.lstrip("- ").strip() | |
if section == "analysis": | |
problem_analysis.append(content) | |
elif section == "paths": | |
solution_paths.append(content) | |
elif section == "insights": | |
meta_insights.append(content) | |
elif section == "conclusion": | |
conclusion += line + " " | |
return { | |
"success": True, | |
"problem_analysis": problem_analysis, | |
"solution_paths": solution_paths, | |
"meta_insights": meta_insights, | |
"conclusion": conclusion.strip(), | |
# Add standard fields for compatibility | |
"reasoning_path": problem_analysis + solution_paths + meta_insights, | |
"conclusion": conclusion.strip() | |
} | |
except Exception as e: | |
return {"success": False, "error": str(e)} | |