Logan Zoellner
commited on
Commit
·
e3d0d75
1
Parent(s):
2ab02d6
comments
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
|
2 |
-
|
3 |
|
4 |
import os
|
5 |
os.system("git clone https://huggingface.co/Cene655/ImagenT5-3B")
|
@@ -48,7 +48,7 @@ from gfpgan import GFPGANer
|
|
48 |
has_cuda = th.cuda.is_available()
|
49 |
device = th.device('cpu' if not has_cuda else 'cuda')
|
50 |
|
51 |
-
Setting Up
|
52 |
|
53 |
def model_fn(x_t, ts, **kwargs):
|
54 |
guidance_scale = 5
|
@@ -97,17 +97,17 @@ model.to(device)
|
|
97 |
model.load_state_dict(_fix_path('/content/ImagenT5-3B/model.pt'))
|
98 |
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
99 |
|
100 |
-
total base parameters 1550556742
|
101 |
|
102 |
num_params = sum(param.numel() for param in model.parameters())
|
103 |
num_params
|
104 |
|
105 |
-
1550556742
|
106 |
|
107 |
realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
|
108 |
num_block=23, num_grow_ch=32, scale=4)
|
109 |
|
110 |
-
netscale = 4
|
111 |
|
112 |
upsampler = RealESRGANer(
|
113 |
scale=netscale,
|
@@ -129,12 +129,7 @@ face_enhancer = GFPGANer(
|
|
129 |
|
130 |
tokenizer = AutoTokenizer.from_pretrained(options['t5_name'])
|
131 |
|
132 |
-
|
133 |
-
For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.
|
134 |
-
- Be aware that you SHOULD NOT rely on t5-3b automatically truncating your input to 512 when padding/encoding.
|
135 |
-
- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.
|
136 |
-
- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.
|
137 |
-
FutureWarning,
|
138 |
|
139 |
#@title What do you want to generate?
|
140 |
|
@@ -174,7 +169,7 @@ def gen_img(prompt):
|
|
174 |
model_kwargs["mask"] = th.cat((cond_attention_mask,
|
175 |
uncond_attention_mask)).to(device)
|
176 |
|
177 |
-
Generation
|
178 |
|
179 |
model.del_cache()
|
180 |
sample = diffusion.p_sample_loop(
|
@@ -189,6 +184,9 @@ def gen_img(prompt):
|
|
189 |
|
190 |
return sample
|
191 |
|
|
|
|
|
|
|
192 |
demo = gr.Blocks()
|
193 |
|
194 |
with demo:
|
|
|
1 |
|
2 |
+
import gradio as gr
|
3 |
|
4 |
import os
|
5 |
os.system("git clone https://huggingface.co/Cene655/ImagenT5-3B")
|
|
|
48 |
has_cuda = th.cuda.is_available()
|
49 |
device = th.device('cpu' if not has_cuda else 'cuda')
|
50 |
|
51 |
+
#Setting Up
|
52 |
|
53 |
def model_fn(x_t, ts, **kwargs):
|
54 |
guidance_scale = 5
|
|
|
97 |
model.load_state_dict(_fix_path('/content/ImagenT5-3B/model.pt'))
|
98 |
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
99 |
|
100 |
+
#total base parameters 1550556742
|
101 |
|
102 |
num_params = sum(param.numel() for param in model.parameters())
|
103 |
num_params
|
104 |
|
105 |
+
#1550556742
|
106 |
|
107 |
realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
|
108 |
num_block=23, num_grow_ch=32, scale=4)
|
109 |
|
110 |
+
#netscale = 4
|
111 |
|
112 |
upsampler = RealESRGANer(
|
113 |
scale=netscale,
|
|
|
129 |
|
130 |
tokenizer = AutoTokenizer.from_pretrained(options['t5_name'])
|
131 |
|
132 |
+
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
#@title What do you want to generate?
|
135 |
|
|
|
169 |
model_kwargs["mask"] = th.cat((cond_attention_mask,
|
170 |
uncond_attention_mask)).to(device)
|
171 |
|
172 |
+
#Generation
|
173 |
|
174 |
model.del_cache()
|
175 |
sample = diffusion.p_sample_loop(
|
|
|
184 |
|
185 |
return sample
|
186 |
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
demo = gr.Blocks()
|
191 |
|
192 |
with demo:
|