|
import functools |
|
import random |
|
|
|
import gradio as gr |
|
import torch |
|
|
|
from fabric.generator import AttentionBasedGenerator |
|
|
|
|
|
|
|
model_name = "" |
|
model_ckpt = "https://huggingface.co./Lykon/DreamShaper/blob/main/DreamShaper_7_pruned.safetensors" |
|
|
|
class GeneratorWrapper: |
|
def __init__(self, model_name=None, model_ckpt=None): |
|
self.model_name = model_name if model_name else None |
|
self.model_ckpt = model_ckpt if model_ckpt else None |
|
self.dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
self.reload() |
|
|
|
def generate(self, *args, **kwargs): |
|
if not hasattr(self, "generator"): |
|
self.reload() |
|
return self.generator.generate(*args, **kwargs) |
|
|
|
def to(self, device): |
|
return self.generator.to(device) |
|
|
|
def reload(self): |
|
if hasattr(self, "generator"): |
|
del self.generator |
|
if self.device == "cuda": |
|
torch.cuda.empty_cache() |
|
self.generator = AttentionBasedGenerator( |
|
model_name=self.model_name, |
|
model_ckpt=self.model_ckpt, |
|
torch_dtype=self.dtype, |
|
).to(self.device) |
|
|
|
generator = GeneratorWrapper(model_name, model_ckpt) |
|
|
|
|
|
css = """ |
|
.btn-green { |
|
background-image: linear-gradient(to bottom right, #86efac, #22c55e) !important; |
|
border-color: #22c55e !important; |
|
color: #166534 !important; |
|
} |
|
.btn-green:hover { |
|
background-image: linear-gradient(to bottom right, #86efac, #86efac) !important; |
|
} |
|
.btn-red { |
|
background: linear-gradient(to bottom right, #fda4af, #fb7185) !important; |
|
border-color: #fb7185 !important; |
|
color: #9f1239 !important; |
|
} |
|
.btn-red:hover {background: linear-gradient(to bottom right, #fda4af, #fda4af) !important;} |
|
|
|
/*****/ |
|
|
|
.dark .btn-green { |
|
background-image: linear-gradient(to bottom right, #047857, #065f46) !important; |
|
border-color: #047857 !important; |
|
color: #ffffff !important; |
|
} |
|
.dark .btn-green:hover { |
|
background-image: linear-gradient(to bottom right, #047857, #047857) !important; |
|
} |
|
.dark .btn-red { |
|
background: linear-gradient(to bottom right, #be123c, #9f1239) !important; |
|
border-color: #be123c !important; |
|
color: #ffffff !important; |
|
} |
|
.dark .btn-red:hover {background: linear-gradient(to bottom right, #be123c, #be123c) !important;} |
|
""" |
|
|
|
def generate_fn( |
|
feedback_enabled, |
|
max_feedback_imgs, |
|
prompt, |
|
neg_prompt, |
|
liked, |
|
disliked, |
|
denoising_steps, |
|
guidance_scale, |
|
feedback_start, |
|
feedback_end, |
|
min_weight, |
|
max_weight, |
|
neg_scale, |
|
batch_size, |
|
seed, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
try: |
|
if seed < 0: |
|
seed = random.randint(1,9999999999999999) |
|
print("seed: ", seed) |
|
|
|
max_feedback_imgs = max(0, int(max_feedback_imgs)) |
|
total_images = (len(liked) if liked else 0) + (len(disliked) if disliked else 0) |
|
|
|
if not feedback_enabled: |
|
liked = [] |
|
disliked = [] |
|
elif total_images > max_feedback_imgs: |
|
if liked and disliked: |
|
max_disliked = min(len(disliked), max_feedback_imgs // 2) |
|
max_liked = min(len(liked), max_feedback_imgs - max_disliked) |
|
if max_liked > len(liked): |
|
max_disliked = max_feedback_imgs - max_liked |
|
liked = liked[-max_liked:] |
|
disliked = disliked[-max_disliked:] |
|
elif liked: |
|
liked = liked[-max_feedback_imgs:] |
|
disliked = [] |
|
else: |
|
liked = [] |
|
disliked = disliked[-max_feedback_imgs:] |
|
|
|
|
|
generate_kwargs = { |
|
"prompt": prompt, |
|
"negative_prompt": neg_prompt, |
|
"liked": liked, |
|
"disliked": disliked, |
|
"denoising_steps": denoising_steps, |
|
"guidance_scale": guidance_scale, |
|
"feedback_start": feedback_start, |
|
"feedback_end": feedback_end, |
|
"min_weight": min_weight, |
|
"max_weight": max_weight, |
|
"neg_scale": neg_scale, |
|
"seed": seed, |
|
"n_images": batch_size, |
|
} |
|
|
|
try: |
|
images = generator.generate(**generate_kwargs) |
|
except RuntimeError as err: |
|
if 'out of memory' in str(err): |
|
generator.reload() |
|
raise |
|
return [(img, f"Image {i+1}") for i, img in enumerate(images)], images, seed |
|
except Exception as err: |
|
raise gr.Error(str(err)) |
|
|
|
|
|
def add_img_from_list(i, curr_imgs, all_imgs): |
|
if all_imgs is None: |
|
all_imgs = [] |
|
if i >= 0 and i < len(curr_imgs): |
|
all_imgs.append(curr_imgs[i]) |
|
return all_imgs, all_imgs |
|
|
|
def add_img(img, all_imgs): |
|
if all_imgs is None: |
|
all_imgs = [] |
|
all_imgs.append(img) |
|
return None, all_imgs, all_imgs |
|
|
|
def remove_img_from_list(event: gr.SelectData, imgs): |
|
if event.index >= 0 and event.index < len(imgs): |
|
imgs.pop(event.index) |
|
return imgs, imgs |
|
|
|
def duplicate_seed_value(seed): |
|
return seed |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
liked_imgs = gr.State([]) |
|
disliked_imgs = gr.State([]) |
|
curr_imgs = gr.State([]) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=100): |
|
prompt = gr.Textbox(label="Prompt") |
|
neg_prompt = gr.Textbox(label="Negative prompt", value="lowres, bad anatomy, bad hands, cropped, worst quality") |
|
submit_btn = gr.Button("Generate", variant="primary", min_width="96px") |
|
|
|
with gr.Row(equal_height=False): |
|
with gr.Column(): |
|
denoising_steps = gr.Slider(1, 100, value=20, step=1, label="Sampling steps") |
|
guidance_scale = gr.Slider(0.0, 30.0, value=6, step=0.25, label="CFG scale") |
|
batch_size = gr.Slider(1, 10, value=4, step=1, label="Batch size", interactive=False) |
|
seed = gr.Number(-1, minimum=-1, precision=0, label="Seed") |
|
max_feedback_imgs = gr.Slider(0, 20, value=6, step=1, label="Max. feedback images", info="Maximum number of liked/disliked images to be used. If exceeded, only the most recent images will be used as feedback. (NOTE: large number of feedback imgs => high VRAM requirements)") |
|
feedback_enabled = gr.Checkbox(True, label="Enable feedback", interactive=True) |
|
|
|
with gr.Accordion("Liked Images", open=True): |
|
liked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload liked image") |
|
like_gallery = gr.Gallery(label="π Liked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False) |
|
clear_liked_btn = gr.Button("Clear likes") |
|
|
|
with gr.Accordion("Disliked Images", open=True): |
|
disliked_img_input = gr.Image(type="pil", shape=(512, 512), height=128, label="Upload disliked image") |
|
dislike_gallery = gr.Gallery(label="π Disliked images (click to remove)", columns=[3, 4, 3, 4, 5, 6], height=256, allow_preview=False) |
|
clear_disliked_btn = gr.Button("Clear dislikes") |
|
|
|
with gr.Accordion("Feedback parameters", open=False): |
|
feedback_start = gr.Slider(0.0, 1.0, value=0.0, label="Feedback start", info="Fraction of denoising steps starting from which to use max. feedback weight.") |
|
feedback_end = gr.Slider(0.0, 1.0, value=0.8, label="Feedback end", info="Up to what fraction of denoising steps to use max. feedback weight.") |
|
feedback_min_weight = gr.Slider(0.0, 1.0, value=0.0, label="Feedback min. weight", info="Attention weight of feedback images when turned off (set to 0.0 to disable)") |
|
feedback_max_weight = gr.Slider(0.0, 1.0, value=0.8, label="Feedback max. weight", info="Attention weight of feedback images when turned on (set to 0.0 to disable)") |
|
feedback_neg_scale = gr.Slider(0.0, 1.0, value=0.5, label="Neg. feedback scale", info="Attention weight of disliked images relative to liked images (set to 0.0 to disable negative feedback)") |
|
|
|
with gr.Column(): |
|
gallery = gr.Gallery(label="Generated images") |
|
|
|
like_btns = [] |
|
dislike_btns = [] |
|
with gr.Row(): |
|
for i in range(0, 2): |
|
like_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-green") |
|
like_btns.append(like_btn) |
|
with gr.Row(): |
|
for i in range(2, 4): |
|
like_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-green") |
|
like_btns.append(like_btn) |
|
with gr.Row(): |
|
for i in range(0, 2): |
|
dislike_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-red") |
|
dislike_btns.append(dislike_btn) |
|
with gr.Row(): |
|
for i in range(2, 4): |
|
dislike_btn = gr.Button(f"π Image {i+1}", elem_classes="btn-red") |
|
dislike_btns.append(dislike_btn) |
|
|
|
prev_seed = gr.Number(-1, label="Previous seed", interactive=False) |
|
prev_seed_hid = gr.Number(-1, visible=False) |
|
|
|
generate_params = [ |
|
feedback_enabled, |
|
max_feedback_imgs, |
|
prompt, |
|
neg_prompt, |
|
liked_imgs, |
|
disliked_imgs, |
|
denoising_steps, |
|
guidance_scale, |
|
feedback_start, |
|
feedback_end, |
|
feedback_min_weight, |
|
feedback_max_weight, |
|
feedback_neg_scale, |
|
batch_size, |
|
seed, |
|
] |
|
submit_btn.click(generate_fn, generate_params, [gallery, curr_imgs, prev_seed_hid], queue=True) |
|
prev_seed_hid.change(duplicate_seed_value, prev_seed_hid, prev_seed, queue=False) |
|
|
|
for i, like_btn in enumerate(like_btns): |
|
like_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, liked_imgs], [like_gallery, liked_imgs], queue=False) |
|
for i, dislike_btn in enumerate(dislike_btns): |
|
dislike_btn.click(functools.partial(add_img_from_list, i), [curr_imgs, disliked_imgs], [dislike_gallery, disliked_imgs], queue=False) |
|
|
|
like_gallery.select(remove_img_from_list, [liked_imgs], [like_gallery, liked_imgs], queue=False) |
|
dislike_gallery.select(remove_img_from_list, [disliked_imgs], [dislike_gallery, disliked_imgs], queue=False) |
|
|
|
liked_img_input.upload(add_img, [liked_img_input, liked_imgs], [liked_img_input, like_gallery, liked_imgs], queue=False) |
|
disliked_img_input.upload(add_img, [disliked_img_input, disliked_imgs], [disliked_img_input, dislike_gallery, disliked_imgs], queue=False) |
|
|
|
clear_liked_btn.click(lambda: [[], []], None, [liked_imgs, like_gallery], queue=False) |
|
clear_disliked_btn.click(lambda: [[], []], None, [disliked_imgs, dislike_gallery], queue=False) |
|
|
|
demo.queue(1) |
|
demo.launch(debug=True) |