import subprocess import pytest import facefusion.globals from facefusion.download import conditional_download from facefusion.face_analyser import pre_check, clear_face_analyser, get_one_face from facefusion.typing import Face from facefusion.vision import read_static_image @pytest.fixture(scope = 'module', autouse = True) def before_all() -> None: conditional_download('.assets/examples', [ 'https://github.com/facefusion/facefusion-assets/releases/download/examples/source.jpg' ]) subprocess.run([ 'ffmpeg', '-i', '.assets/examples/source.jpg', '-vf', 'crop=iw*0.8:ih*0.8', '.assets/examples/source-80crop.jpg' ]) subprocess.run([ 'ffmpeg', '-i', '.assets/examples/source.jpg', '-vf', 'crop=iw*0.7:ih*0.7', '.assets/examples/source-70crop.jpg' ]) subprocess.run([ 'ffmpeg', '-i', '.assets/examples/source.jpg', '-vf', 'crop=iw*0.6:ih*0.6', '.assets/examples/source-60crop.jpg' ]) @pytest.fixture(autouse = True) def before_each() -> None: facefusion.globals.face_detector_score = 0.5 facefusion.globals.face_landmarker_score = 0.5 facefusion.globals.face_recognizer_model = 'arcface_inswapper' clear_face_analyser() def test_get_one_face_with_retinaface() -> None: facefusion.globals.face_detector_model = 'retinaface' facefusion.globals.face_detector_size = '320x320' pre_check() source_paths =\ [ '.assets/examples/source.jpg', '.assets/examples/source-80crop.jpg', '.assets/examples/source-70crop.jpg', '.assets/examples/source-60crop.jpg' ] for source_path in source_paths: source_frame = read_static_image(source_path) face = get_one_face(source_frame) assert isinstance(face, Face) def test_get_one_face_with_scrfd() -> None: facefusion.globals.face_detector_model = 'scrfd' facefusion.globals.face_detector_size = '640x640' pre_check() source_paths =\ [ '.assets/examples/source.jpg', '.assets/examples/source-80crop.jpg', '.assets/examples/source-70crop.jpg', '.assets/examples/source-60crop.jpg' ] for source_path in source_paths: source_frame = read_static_image(source_path) face = get_one_face(source_frame) assert isinstance(face, Face) def test_get_one_face_with_yoloface() -> None: facefusion.globals.face_detector_model = 'yoloface' facefusion.globals.face_detector_size = '640x640' pre_check() source_paths =\ [ '.assets/examples/source.jpg', '.assets/examples/source-80crop.jpg', '.assets/examples/source-70crop.jpg', '.assets/examples/source-60crop.jpg' ] for source_path in source_paths: source_frame = read_static_image(source_path) face = get_one_face(source_frame) assert isinstance(face, Face) def test_get_one_face_with_yunet() -> None: facefusion.globals.face_detector_model = 'yunet' facefusion.globals.face_detector_size = '640x640' pre_check() source_paths =\ [ '.assets/examples/source.jpg', '.assets/examples/source-80crop.jpg', '.assets/examples/source-70crop.jpg', '.assets/examples/source-60crop.jpg' ] for source_path in source_paths: source_frame = read_static_image(source_path) face = get_one_face(source_frame) assert isinstance(face, Face)