BlackBeenie's picture
feat: Initial commit
09b19a1
#!/usr/bin/env python3
import os
import sys
import shutil
# single thread doubles cuda performance - needs to be set before torch import
if any(arg.startswith('--execution-provider') for arg in sys.argv):
os.environ['OMP_NUM_THREADS'] = '1'
import warnings
from typing import List
import platform
import signal
import argparse
import torch
import onnxruntime
import roop.globals
import roop.metadata
import roop.utilities as util
import roop.ui as ui
from settings import Settings
from roop.face_helper import extract_face_images
from chain_img_processor import ChainImgProcessor, ChainVideoProcessor, ChainBatchImageProcessor
clip_text = None
if 'ROCMExecutionProvider' in roop.globals.execution_providers:
del torch
warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
def parse_args() -> None:
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
program = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=100))
program.add_argument('-s', '--source', help='select a source image', dest='source_path')
program.add_argument('-t', '--target', help='select a target image or video', dest='target_path')
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path')
program.add_argument('-f', '--folder', help='select a target folder with images or videos to batch process', dest='target_folder_path')
program.add_argument('--frame-processor', help='frame processors (choices: face_swapper, face_enhancer, ...)', dest='frame_processor', default=['face_swapper'], nargs='+')
program.add_argument('--keep-fps', help='keep target fps', dest='keep_fps', action='store_true')
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true')
program.add_argument('--skip-audio', help='skip target audio', dest='skip_audio', action='store_true')
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true')
program.add_argument('--source-face_index', help='index position of source face in image', dest='source_face_index', type=int, default=0)
program.add_argument('--target-face_index', help='index position of target face in image', dest='target_face_index', type=int, default=0)
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory())
program.add_argument('--execution-provider', help='available execution provider (choices: cpu, ...)', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+')
program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
program.add_argument('-v', '--version', action='version', version=f'{roop.metadata.name} {roop.metadata.version}')
args = program.parse_args()
roop.globals.source_path = args.source_path
roop.globals.target_path = args.target_path
roop.globals.output_path = util.normalize_output_path(roop.globals.source_path, roop.globals.target_path, args.output_path)
roop.globals.target_folder_path = args.target_folder_path
roop.globals.headless = args.source_path or args.target_path or args.output_path
# Always enable all processors when using GUI
if not roop.globals.headless:
roop.globals.frame_processors = ['face_swapper', 'face_enhancer']
else:
roop.globals.frame_processors = args.frame_processor
roop.globals.keep_fps = args.keep_fps
roop.globals.keep_frames = args.keep_frames
roop.globals.skip_audio = args.skip_audio
roop.globals.many_faces = args.many_faces
roop.globals.source_face_index = args.source_face_index
roop.globals.target_face_index = args.target_face_index
roop.globals.video_encoder = args.video_encoder
roop.globals.video_quality = args.video_quality
roop.globals.max_memory = args.max_memory
roop.globals.execution_providers = decode_execution_providers(args.execution_provider)
roop.globals.execution_threads = args.execution_threads
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
def suggest_max_memory() -> int:
if platform.system().lower() == 'darwin':
return 4
return 16
def suggest_execution_providers() -> List[str]:
return encode_execution_providers(onnxruntime.get_available_providers())
def suggest_execution_threads() -> int:
if 'DmlExecutionProvider' in roop.globals.execution_providers:
return 1
if 'ROCMExecutionProvider' in roop.globals.execution_providers:
return 1
return 8
def limit_resources() -> None:
# prevent tensorflow memory leak
# gpus = tensorflow.config.experimental.list_physical_devices('GPU')
# for gpu in gpus:
# tensorflow.config.experimental.set_virtual_device_configuration(gpu, [
# tensorflow.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)
# ])
# limit memory usage
if roop.globals.max_memory:
memory = roop.globals.max_memory * 1024 ** 3
if platform.system().lower() == 'darwin':
memory = roop.globals.max_memory * 1024 ** 6
if platform.system().lower() == 'windows':
import ctypes
kernel32 = ctypes.windll.kernel32
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
else:
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
def release_resources() -> None:
if 'CUDAExecutionProvider' in roop.globals.execution_providers:
torch.cuda.empty_cache()
def pre_check() -> bool:
if sys.version_info < (3, 9):
update_status('Python version is not supported - please upgrade to 3.9 or higher.')
return False
download_directory_path = util.resolve_relative_path('../models')
util.conditional_download(download_directory_path, ['https://huggingface.co./countfloyd/deepfake/resolve/main/inswapper_128.onnx'])
util.conditional_download(download_directory_path, ['https://huggingface.co./countfloyd/deepfake/resolve/main/GFPGANv1.4.pth'])
util.conditional_download(download_directory_path, ['https://github.com/csxmli2016/DMDNet/releases/download/v1/DMDNet.pth'])
download_directory_path = util.resolve_relative_path('../models/CLIP')
util.conditional_download(download_directory_path, ['https://huggingface.co./countfloyd/deepfake/resolve/main/rd64-uni-refined.pth'])
download_directory_path = util.resolve_relative_path('../models/CodeFormer')
util.conditional_download(download_directory_path, ['https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'])
download_directory_path = util.resolve_relative_path('../models/CodeFormer/facelib')
util.conditional_download(download_directory_path, ['https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth'])
util.conditional_download(download_directory_path, ['https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth'])
download_directory_path = util.resolve_relative_path('../models/CodeFormer/realesrgan')
util.conditional_download(download_directory_path, ['https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'])
if not shutil.which('ffmpeg'):
update_status('ffmpeg is not installed.')
return True
def update_status(message: str, scope: str = 'ROOP.CORE') -> None:
print(f'[{scope}] {message}')
# if not roop.globals.headless:
# ui.update_status(message)
def start() -> None:
if roop.globals.headless:
faces = extract_face_images(roop.globals.source_path, (False, 0))
roop.globals.SELECTED_FACE_DATA_INPUT = faces[roop.globals.source_face_index]
faces = extract_face_images(roop.globals.target_path, (False, util.has_image_extension(roop.globals.target_path)))
roop.globals.SELECTED_FACE_DATA_OUTPUT = faces[roop.globals.target_face_index]
if 'face_enhancer' in roop.globals.frame_processors:
roop.globals.selected_enhancer = 'GFPGAN'
batch_process(None, False, None)
def InitPlugins():
if not roop.globals.IMAGE_CHAIN_PROCESSOR:
roop.globals.IMAGE_CHAIN_PROCESSOR = ChainImgProcessor()
roop.globals.BATCH_IMAGE_CHAIN_PROCESSOR = ChainBatchImageProcessor()
roop.globals.VIDEO_CHAIN_PROCESSOR = ChainVideoProcessor()
roop.globals.IMAGE_CHAIN_PROCESSOR.init_with_plugins()
roop.globals.BATCH_IMAGE_CHAIN_PROCESSOR.init_with_plugins()
roop.globals.VIDEO_CHAIN_PROCESSOR.init_with_plugins()
def get_processing_plugins(use_clip):
processors = "faceswap"
if use_clip:
processors += ",txt2clip"
if roop.globals.selected_enhancer == 'GFPGAN':
processors += ",gfpgan"
elif roop.globals.selected_enhancer == 'Codeformer':
processors += ",codeformer"
elif roop.globals.selected_enhancer == 'DMDNet':
processors += ",dmdnet"
return processors
def live_swap(frame, swap_mode, use_clip, clip_text):
if frame is None:
return frame
InitPlugins()
processors = get_processing_plugins(use_clip)
temp_frame, _ = roop.globals.IMAGE_CHAIN_PROCESSOR.run_chain(frame,
{"swap_mode": swap_mode,
"original_frame": frame,
"blend_ratio": roop.globals.blend_ratio,
"face_distance_threshold": roop.globals.distance_threshold,
"input_face_datas": [roop.globals.SELECTED_FACE_DATA_INPUT], "target_face_datas": [roop.globals.SELECTED_FACE_DATA_OUTPUT],
"clip_prompt": clip_text},
processors)
return temp_frame
def params_gen_func(proc, frame):
global clip_text
return {"original_frame": frame, "blend_ratio": roop.globals.blend_ratio,
"swap_mode": roop.globals.face_swap_mode, "face_distance_threshold": roop.globals.distance_threshold,
"input_face_datas": [roop.globals.SELECTED_FACE_DATA_INPUT], "target_face_datas": [roop.globals.SELECTED_FACE_DATA_OUTPUT],
"clip_prompt": clip_text}
def batch_process(files, use_clip, new_clip_text) -> None:
global clip_text
InitPlugins()
processors = get_processing_plugins(use_clip)
clip_text = new_clip_text
imagefiles = []
imagefinalnames = []
videofiles = []
videofinalnames = []
need_join = False
if files is None:
need_join = True
if roop.globals.target_folder_path is None:
roop.globals.target_folder_path = os.path.dirname(roop.globals.target_path)
files = [os.path.basename(roop.globals.target_path)]
roop.globals.output_path = os.path.dirname(roop.globals.output_path)
else:
files = [f for f in os.listdir(roop.globals.target_folder_path) if os.path.isfile(os.path.join(roop.globals.target_folder_path, f))]
update_status('Sorting videos/images')
for f in files:
if need_join:
fullname = os.path.join(roop.globals.target_folder_path, f)
else:
fullname = f
if util.has_image_extension(fullname):
imagefiles.append(fullname)
imagefinalnames.append(util.get_destfilename_from_path(fullname, roop.globals.output_path, f'_fake.{roop.globals.CFG.output_image_format}'))
elif util.is_video(fullname) or util.has_extension(fullname, ['gif']):
videofiles.append(fullname)
videofinalnames.append(util.get_destfilename_from_path(fullname, roop.globals.output_path, f'_fake.{roop.globals.CFG.output_video_format}'))
if(len(imagefiles) > 0):
update_status('Processing image(s)')
roop.globals.BATCH_IMAGE_CHAIN_PROCESSOR.run_batch_chain(imagefiles, imagefinalnames, roop.globals.execution_threads, processors, params_gen_func)
if(len(videofiles) > 0):
for index,v in enumerate(videofiles):
update_status(f'Processing video {v}')
fps = util.detect_fps(v)
if roop.globals.keep_frames:
update_status('Creating temp resources...')
util.create_temp(v)
update_status('Extracting frames...')
util.extract_frames(v)
temp_frame_paths = util.get_temp_frame_paths(v)
roop.globals.BATCH_IMAGE_CHAIN_PROCESSOR.run_batch_chain(temp_frame_paths, temp_frame_paths, roop.globals.execution_threads, processors, params_gen_func)
update_status(f'Creating video with {fps} FPS...')
util.create_video(v, videofinalnames[index], fps)
else:
update_status(f'Creating video with {fps} FPS...')
roop.globals.VIDEO_CHAIN_PROCESSOR.run_video_chain(v,videofinalnames[index], fps, roop.globals.execution_threads, processors, params_gen_func, roop.globals.target_path)
if os.path.isfile(videofinalnames[index]):
if util.has_extension(v, ['gif']):
gifname = roop.utilities.get_destfilename_from_path(v, './output', '_fake.gif')
update_status('Creating final GIF')
util.create_gif_from_video(videofinalnames[index], gifname)
elif not roop.globals.skip_audio:
finalname = roop.utilities.get_destfilename_from_path(videofinalnames[index], roop.globals.output_path, f'_final.{roop.globals.CFG.output_video_format}')
util.restore_audio(videofinalnames[index], v, finalname)
if os.path.isfile(videofinalnames[index]):
os.remove(videofinalnames[index])
else:
update_status('Failed!')
update_status('Finished')
roop.globals.target_folder_path = None
def destroy() -> None:
if roop.globals.target_path:
util.clean_temp(roop.globals.target_path)
sys.exit()
def run() -> None:
parse_args()
if not pre_check():
return
limit_resources()
roop.globals.CFG = Settings('config.yaml')
if roop.globals.headless:
start()
else:
ui.run()