docker-faceswap-sample / plugins /plugin_txt2clip.py
BlackBeenie's picture
feat: Add plugins
fe3fdf0
raw
history blame
3.7 kB
import os
import cv2
import numpy as np
import torch
import threading
from chain_img_processor import ChainImgProcessor, ChainImgPlugin
from torchvision import transforms
from clip.clipseg import CLIPDensePredT
from numpy import asarray
THREAD_LOCK_CLIP = threading.Lock()
modname = os.path.basename(__file__)[:-3] # calculating modname
model_clip = None
# start function
def start(core:ChainImgProcessor):
manifest = { # plugin settings
"name": "Text2Clip", # name
"version": "1.0", # version
"default_options": {
},
"img_processor": {
"txt2clip": Text2Clip
}
}
return manifest
def start_with_options(core:ChainImgProcessor, manifest:dict):
pass
class Text2Clip(ChainImgPlugin):
def load_clip_model(self):
global model_clip
if model_clip is None:
device = torch.device(super().device)
model_clip = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True)
model_clip.eval();
model_clip.load_state_dict(torch.load('models/CLIP/rd64-uni-refined.pth', map_location=torch.device('cpu')), strict=False)
model_clip.to(device)
def init_plugin(self):
self.load_clip_model()
def process(self, frame, params:dict):
if "face_detected" in params:
if not params["face_detected"]:
return frame
return self.mask_original(params["original_frame"], frame, params["clip_prompt"])
def mask_original(self, img1, img2, keywords):
global model_clip
source_image_small = cv2.resize(img1, (256,256))
img_mask = np.full((source_image_small.shape[0],source_image_small.shape[1]), 0, dtype=np.float32)
mask_border = 1
l = 0
t = 0
r = 1
b = 1
mask_blur = 5
clip_blur = 5
img_mask = cv2.rectangle(img_mask, (mask_border+int(l), mask_border+int(t)),
(256 - mask_border-int(r), 256-mask_border-int(b)), (255, 255, 255), -1)
img_mask = cv2.GaussianBlur(img_mask, (mask_blur*2+1,mask_blur*2+1), 0)
img_mask /= 255
input_image = source_image_small
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
transforms.Resize((256, 256)),
])
img = transform(input_image).unsqueeze(0)
thresh = 0.5
prompts = keywords.split(',')
with THREAD_LOCK_CLIP:
with torch.no_grad():
preds = model_clip(img.repeat(len(prompts),1,1,1), prompts)[0]
clip_mask = torch.sigmoid(preds[0][0])
for i in range(len(prompts)-1):
clip_mask += torch.sigmoid(preds[i+1][0])
clip_mask = clip_mask.data.cpu().numpy()
np.clip(clip_mask, 0, 1)
clip_mask[clip_mask>thresh] = 1.0
clip_mask[clip_mask<=thresh] = 0.0
kernel = np.ones((5, 5), np.float32)
clip_mask = cv2.dilate(clip_mask, kernel, iterations=1)
clip_mask = cv2.GaussianBlur(clip_mask, (clip_blur*2+1,clip_blur*2+1), 0)
img_mask *= clip_mask
img_mask[img_mask<0.0] = 0.0
img_mask = cv2.resize(img_mask, (img2.shape[1], img2.shape[0]))
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1])
target = img2.astype(np.float32)
result = (1-img_mask) * target
result += img_mask * img1.astype(np.float32)
return np.uint8(result)