Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
from transformers import VisionEncoderDecoderModel | |
from fastapi import FastAPI, File, UploadFile | |
from fastapi.responses import HTMLResponse | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.templating import Jinja2Templates | |
import warnings | |
from contextlib import contextmanager | |
from transformers import MBartTokenizer, ViTImageProcessor, XLMRobertaTokenizer | |
from transformers import ProcessorMixin | |
class CustomOCRProcessor(ProcessorMixin): | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = "AutoImageProcessor" | |
tokenizer_class = "AutoTokenizer" | |
def __init__(self, image_processor=None, tokenizer=None, **kwargs): | |
if "feature_extractor" in kwargs: | |
warnings.warn( | |
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" | |
" instead.", | |
FutureWarning, | |
) | |
feature_extractor = kwargs.pop("feature_extractor") | |
image_processor = image_processor if image_processor is not None else feature_extractor | |
if image_processor is None: | |
raise ValueError("You need to specify an `image_processor`.") | |
if tokenizer is None: | |
raise ValueError("You need to specify a `tokenizer`.") | |
super().__init__(image_processor, tokenizer) | |
self.current_processor = self.image_processor | |
self._in_target_context_manager = False | |
def __call__(self, *args, **kwargs): | |
# For backward compatibility | |
if self._in_target_context_manager: | |
return self.current_processor(*args, **kwargs) | |
images = kwargs.pop("images", None) | |
text = kwargs.pop("text", None) | |
if len(args) > 0: | |
images = args[0] | |
args = args[1:] | |
if images is None and text is None: | |
raise ValueError("You need to specify either an `images` or `text` input to process.") | |
if images is not None: | |
inputs = self.image_processor(images, *args, **kwargs) | |
if text is not None: | |
encodings = self.tokenizer(text, **kwargs) | |
if text is None: | |
return inputs | |
elif images is None: | |
return encodings | |
else: | |
inputs["labels"] = encodings["input_ids"] | |
return inputs | |
def batch_decode(self, *args, **kwargs): | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
return self.tokenizer.decode(*args, **kwargs) | |
image_processor = ViTImageProcessor.from_pretrained( | |
'microsoft/swin-base-patch4-window12-384-in22k' | |
) | |
tokenizer = MBartTokenizer.from_pretrained( | |
'facebook/mbart-large-50' | |
) | |
processortext2 = CustomOCRProcessor(image_processor,tokenizer) | |
app = FastAPI() | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
templates = Jinja2Templates(directory="templates") | |
# Download and load the model | |
model2 = VisionEncoderDecoderModel.from_pretrained("musadac/vilanocr-single-urdu",use_auth_token=True).to(device) | |
async def root(): | |
return templates.TemplateResponse("index.html", {"request": None}) | |
async def upload_image(image: UploadFile = File(...)): | |
# Preprocess image | |
img = Image.open(image.file).convert("RGB") | |
pixel_values = processortext(img.convert("RGB"), return_tensors="pt").pixel_values | |
# Run the model | |
with torch.no_grad(): | |
generated_ids = model2.generate(img_tensor) | |
# Extract OCR result | |
result = processortext.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return {"result": result} | |